Softmax函数

S o f t m a x Softmax Softmax 函数是一种常用的激活函数,通常用于多类别分类问题中。它的原理是将一个向量的元素转化为概率分布,使得每个元素的取值范围在0到1之间,并且所有元素的和为1。 S o f t m a x Softmax Softmax 函数的作用是将原始的线性得分转换为概率分布,使得模型能够对不同类别进行概率预测。在多类别分类问题中, S o f t m a x Softmax Softmax 函数可以帮助模型选择概率最大的类别作为预测结果。

S o f t m a x Softmax Softmax 函数的数学表达式为:
S o f t m a x ( x i ) = e x i ∑ j = 1 N e x j {Softmax}(x_i) = \frac{e^{x_i}}{\sum_{j=1}^{N} e^{x_j}} Softmax(xi)=∑j=1Nexjexi

其中, S o f t m a x ( x i ) Softmax(x_i) Softmax(xi) 表示输入向量中第 i i i个元素经过 S o f t m a x Softmax Softmax函数后的值,即第 i i i个类别的概率预测; x i x_i xi表示输入向量中第i个元素的原始得分(线性输出); N N N表示输入向量的维度,即类别的数量; e e e表示自然对数的底数。 S o f t m a x Softmax Softmax 函数常用于神经网络输出层,将模型输出转化为对各个类别的概率预测,从而进行多类别分类。

下面是使用PyTorch实现Softmax函数的例子:

python 复制代码
import torch
import torch.nn as nn

# 定义模型
class ModelWithSoftmax(nn.Module):
    def __init__(self):
        super(ModelWithSoftmax, self).__init__()
        self.fc1 = nn.Linear(10, 5)  # 输入维度为10,输出维度为5

    def forward(self, x):
        x = self.fc1(x)
        x = nn.functional.softmax(x, dim=1)  # 使用PyTorch中的softmax函数
        return x

# 创建模型实例
model = ModelWithSoftmax()

# 输入示例
input_data = torch.randn(3, 10)  # 输入数据维度为(3, 10)

# 模型前向传播
output = model(input_data)

print(output)

在这个例子中定义了一个包含Softmax函数的简单的全连接神经网络模型。在模型的前向传播中,输入数据经过全连接层(self.fc1),然后通过PyTorch中的nn.functional.softmax函数进行Softmax变换。输出结果为模型对不同类别的概率预测。

相关推荐
如竟没有火炬8 分钟前
四数相加贰——哈希表
数据结构·python·算法·leetcode·散列表
码农很忙9 分钟前
从0到1搭建智能分析OBS埋点数据的AI Agent:实战指南
数据库·人工智能
JoannaJuanCV13 分钟前
自动驾驶—CARLA仿真(5)Actors与Blueprints
人工智能·机器学习·自动驾驶
Saniffer_SH13 分钟前
【每日一题】PCIe答疑 - 接大量 GPU 时主板不认设备或无法启动和MMIO的可能关系?
运维·服务器·网络·人工智能·驱动开发·fpga开发·硬件工程
V1ncent Chen21 分钟前
机器是如何识别图片的?:卷积神经网络
人工智能·神经网络·cnn
背心2块钱包邮22 分钟前
第9节——部分分式积分(Partial Fraction Decomposition)
人工智能·python·算法·机器学习·matplotlib
仰泳的熊猫24 分钟前
1148 Werewolf - Simple Version
数据结构·c++·算法·pat考试
chao18984424 分钟前
MATLAB中的多重网格算法与计算流体动力学
开发语言·算法·matlab
木盏24 分钟前
三维高斯的分裂
开发语言·python