Softmax函数

S o f t m a x Softmax Softmax 函数是一种常用的激活函数,通常用于多类别分类问题中。它的原理是将一个向量的元素转化为概率分布,使得每个元素的取值范围在0到1之间,并且所有元素的和为1。 S o f t m a x Softmax Softmax 函数的作用是将原始的线性得分转换为概率分布,使得模型能够对不同类别进行概率预测。在多类别分类问题中, S o f t m a x Softmax Softmax 函数可以帮助模型选择概率最大的类别作为预测结果。

S o f t m a x Softmax Softmax 函数的数学表达式为:
S o f t m a x ( x i ) = e x i ∑ j = 1 N e x j {Softmax}(x_i) = \frac{e^{x_i}}{\sum_{j=1}^{N} e^{x_j}} Softmax(xi)=∑j=1Nexjexi

其中, S o f t m a x ( x i ) Softmax(x_i) Softmax(xi) 表示输入向量中第 i i i个元素经过 S o f t m a x Softmax Softmax函数后的值,即第 i i i个类别的概率预测; x i x_i xi表示输入向量中第i个元素的原始得分(线性输出); N N N表示输入向量的维度,即类别的数量; e e e表示自然对数的底数。 S o f t m a x Softmax Softmax 函数常用于神经网络输出层,将模型输出转化为对各个类别的概率预测,从而进行多类别分类。

下面是使用PyTorch实现Softmax函数的例子:

python 复制代码
import torch
import torch.nn as nn

# 定义模型
class ModelWithSoftmax(nn.Module):
    def __init__(self):
        super(ModelWithSoftmax, self).__init__()
        self.fc1 = nn.Linear(10, 5)  # 输入维度为10,输出维度为5

    def forward(self, x):
        x = self.fc1(x)
        x = nn.functional.softmax(x, dim=1)  # 使用PyTorch中的softmax函数
        return x

# 创建模型实例
model = ModelWithSoftmax()

# 输入示例
input_data = torch.randn(3, 10)  # 输入数据维度为(3, 10)

# 模型前向传播
output = model(input_data)

print(output)

在这个例子中定义了一个包含Softmax函数的简单的全连接神经网络模型。在模型的前向传播中,输入数据经过全连接层(self.fc1),然后通过PyTorch中的nn.functional.softmax函数进行Softmax变换。输出结果为模型对不同类别的概率预测。

相关推荐
dhxhsgrx10 分钟前
PYTHON训练营DAY27
开发语言·python
I"ll carry you13 分钟前
【2025.5.12】视觉语言模型 (更好、更快、更强)
人工智能·语言模型·自然语言处理
双翌视觉27 分钟前
机器视觉光源选型解析:照亮工业检测的“智慧之眼”
人工智能·机器视觉·视觉对位·视觉软件
Echo``35 分钟前
1:OpenCV—图像基础
c++·图像处理·人工智能·opencv·算法·计算机视觉·视觉检测
FL1717131437 分钟前
MATLAB机器人系统工具箱中的loadrobot和importrobot
人工智能·matlab·机器人
☞无能盖世♛逞何英雄☜43 分钟前
Flask框架搭建
后端·python·flask
Q_Q19632884751 小时前
python的家教课程管理系统
开发语言·spring boot·python·django·flask·node.js·php
夏天是冰红茶1 小时前
图像处理:预览并绘制图像细节
图像处理·人工智能·opencv
点云SLAM1 小时前
Python中in和is关键字详解和使用
开发语言·人工智能·python·python学习·in和is关键字·python中for循环
后知后觉1 小时前
深度学习-最简单的Demo-直接运行
人工智能·深度学习