Softmax函数

S o f t m a x Softmax Softmax 函数是一种常用的激活函数,通常用于多类别分类问题中。它的原理是将一个向量的元素转化为概率分布,使得每个元素的取值范围在0到1之间,并且所有元素的和为1。 S o f t m a x Softmax Softmax 函数的作用是将原始的线性得分转换为概率分布,使得模型能够对不同类别进行概率预测。在多类别分类问题中, S o f t m a x Softmax Softmax 函数可以帮助模型选择概率最大的类别作为预测结果。

S o f t m a x Softmax Softmax 函数的数学表达式为:
S o f t m a x ( x i ) = e x i ∑ j = 1 N e x j {Softmax}(x_i) = \frac{e^{x_i}}{\sum_{j=1}^{N} e^{x_j}} Softmax(xi)=∑j=1Nexjexi

其中, S o f t m a x ( x i ) Softmax(x_i) Softmax(xi) 表示输入向量中第 i i i个元素经过 S o f t m a x Softmax Softmax函数后的值,即第 i i i个类别的概率预测; x i x_i xi表示输入向量中第i个元素的原始得分(线性输出); N N N表示输入向量的维度,即类别的数量; e e e表示自然对数的底数。 S o f t m a x Softmax Softmax 函数常用于神经网络输出层,将模型输出转化为对各个类别的概率预测,从而进行多类别分类。

下面是使用PyTorch实现Softmax函数的例子:

python 复制代码
import torch
import torch.nn as nn

# 定义模型
class ModelWithSoftmax(nn.Module):
    def __init__(self):
        super(ModelWithSoftmax, self).__init__()
        self.fc1 = nn.Linear(10, 5)  # 输入维度为10,输出维度为5

    def forward(self, x):
        x = self.fc1(x)
        x = nn.functional.softmax(x, dim=1)  # 使用PyTorch中的softmax函数
        return x

# 创建模型实例
model = ModelWithSoftmax()

# 输入示例
input_data = torch.randn(3, 10)  # 输入数据维度为(3, 10)

# 模型前向传播
output = model(input_data)

print(output)

在这个例子中定义了一个包含Softmax函数的简单的全连接神经网络模型。在模型的前向传播中,输入数据经过全连接层(self.fc1),然后通过PyTorch中的nn.functional.softmax函数进行Softmax变换。输出结果为模型对不同类别的概率预测。

相关推荐
烟锁池塘柳0几秒前
【大模型】解码策略:Greedy Search、Beam Search、Top-k/Top-p、Temperature Sampling等
人工智能·深度学习·机器学习
风逸hhh15 分钟前
python打卡day58@浙大疏锦行
开发语言·python
盼小辉丶15 分钟前
PyTorch实战(14)——条件生成对抗网络(conditional GAN,cGAN)
人工智能·pytorch·生成对抗网络
Allen_LVyingbo1 小时前
数智读书笔记系列035《未来医疗:医疗4.0引领第四次医疗产业变革》
人工智能·经验分享·笔记·健康医疗
zzc9211 小时前
时频图数据集更正程序,去除坐标轴白边及调整对应的标签值
人工智能·深度学习·数据集·标签·时频图·更正·白边
isNotNullX1 小时前
什么是数据分析?常见方法全解析
大数据·数据库·数据仓库·人工智能·数据分析
烛阴1 小时前
一文搞懂 Python 闭包:让你的代码瞬间“高级”起来!
前端·python
riveting1 小时前
明远智睿H618:开启多场景智慧生活新时代
人工智能·嵌入式硬件·智能硬件·lga封装·3506
JosieBook1 小时前
【Java编程动手学】Java中的数组与集合
java·开发语言·python
夜阑卧听风吹雨,铁马冰河入梦来1 小时前
Spring AI 阿里巴巴学习
人工智能·学习·spring