Softmax函数

S o f t m a x Softmax Softmax 函数是一种常用的激活函数,通常用于多类别分类问题中。它的原理是将一个向量的元素转化为概率分布,使得每个元素的取值范围在0到1之间,并且所有元素的和为1。 S o f t m a x Softmax Softmax 函数的作用是将原始的线性得分转换为概率分布,使得模型能够对不同类别进行概率预测。在多类别分类问题中, S o f t m a x Softmax Softmax 函数可以帮助模型选择概率最大的类别作为预测结果。

S o f t m a x Softmax Softmax 函数的数学表达式为:
S o f t m a x ( x i ) = e x i ∑ j = 1 N e x j {Softmax}(x_i) = \frac{e^{x_i}}{\sum_{j=1}^{N} e^{x_j}} Softmax(xi)=∑j=1Nexjexi

其中, S o f t m a x ( x i ) Softmax(x_i) Softmax(xi) 表示输入向量中第 i i i个元素经过 S o f t m a x Softmax Softmax函数后的值,即第 i i i个类别的概率预测; x i x_i xi表示输入向量中第i个元素的原始得分(线性输出); N N N表示输入向量的维度,即类别的数量; e e e表示自然对数的底数。 S o f t m a x Softmax Softmax 函数常用于神经网络输出层,将模型输出转化为对各个类别的概率预测,从而进行多类别分类。

下面是使用PyTorch实现Softmax函数的例子:

python 复制代码
import torch
import torch.nn as nn

# 定义模型
class ModelWithSoftmax(nn.Module):
    def __init__(self):
        super(ModelWithSoftmax, self).__init__()
        self.fc1 = nn.Linear(10, 5)  # 输入维度为10,输出维度为5

    def forward(self, x):
        x = self.fc1(x)
        x = nn.functional.softmax(x, dim=1)  # 使用PyTorch中的softmax函数
        return x

# 创建模型实例
model = ModelWithSoftmax()

# 输入示例
input_data = torch.randn(3, 10)  # 输入数据维度为(3, 10)

# 模型前向传播
output = model(input_data)

print(output)

在这个例子中定义了一个包含Softmax函数的简单的全连接神经网络模型。在模型的前向传播中,输入数据经过全连接层(self.fc1),然后通过PyTorch中的nn.functional.softmax函数进行Softmax变换。输出结果为模型对不同类别的概率预测。

相关推荐
PAK向日葵1 小时前
【算法导论】PDD 0817笔试题题解
算法·面试
Moshow郑锴2 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20252 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR3 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
地平线开发者3 小时前
ReID/OSNet 算法模型量化转换实践
算法·自动驾驶
失散133 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
wyiyiyi4 小时前
【Web后端】Django、flask及其场景——以构建系统原型为例
前端·数据库·后端·python·django·flask
地平线开发者4 小时前
开发者说|EmbodiedGen:为具身智能打造可交互3D世界生成引擎
算法·自动驾驶
mit6.8244 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945194 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt