Softmax函数

S o f t m a x Softmax Softmax 函数是一种常用的激活函数,通常用于多类别分类问题中。它的原理是将一个向量的元素转化为概率分布,使得每个元素的取值范围在0到1之间,并且所有元素的和为1。 S o f t m a x Softmax Softmax 函数的作用是将原始的线性得分转换为概率分布,使得模型能够对不同类别进行概率预测。在多类别分类问题中, S o f t m a x Softmax Softmax 函数可以帮助模型选择概率最大的类别作为预测结果。

S o f t m a x Softmax Softmax 函数的数学表达式为:
S o f t m a x ( x i ) = e x i ∑ j = 1 N e x j {Softmax}(x_i) = \frac{e^{x_i}}{\sum_{j=1}^{N} e^{x_j}} Softmax(xi)=∑j=1Nexjexi

其中, S o f t m a x ( x i ) Softmax(x_i) Softmax(xi) 表示输入向量中第 i i i个元素经过 S o f t m a x Softmax Softmax函数后的值,即第 i i i个类别的概率预测; x i x_i xi表示输入向量中第i个元素的原始得分(线性输出); N N N表示输入向量的维度,即类别的数量; e e e表示自然对数的底数。 S o f t m a x Softmax Softmax 函数常用于神经网络输出层,将模型输出转化为对各个类别的概率预测,从而进行多类别分类。

下面是使用PyTorch实现Softmax函数的例子:

python 复制代码
import torch
import torch.nn as nn

# 定义模型
class ModelWithSoftmax(nn.Module):
    def __init__(self):
        super(ModelWithSoftmax, self).__init__()
        self.fc1 = nn.Linear(10, 5)  # 输入维度为10,输出维度为5

    def forward(self, x):
        x = self.fc1(x)
        x = nn.functional.softmax(x, dim=1)  # 使用PyTorch中的softmax函数
        return x

# 创建模型实例
model = ModelWithSoftmax()

# 输入示例
input_data = torch.randn(3, 10)  # 输入数据维度为(3, 10)

# 模型前向传播
output = model(input_data)

print(output)

在这个例子中定义了一个包含Softmax函数的简单的全连接神经网络模型。在模型的前向传播中,输入数据经过全连接层(self.fc1),然后通过PyTorch中的nn.functional.softmax函数进行Softmax变换。输出结果为模型对不同类别的概率预测。

相关推荐
何双新21 分钟前
第21讲、Odoo 18 配置机制详解
linux·python·开源
Wish3D24 分钟前
阿里云OSS 上传文件 Python版本
开发语言·python·阿里云
阿福不是狗2 小时前
Python使用总结之Mac安装docker并配置wechaty
python·macos·docker
一切皆有可能!!3 小时前
实践篇:利用ragas在自己RAG上实现LLM评估②
人工智能·语言模型
gen_3 小时前
mac环境下的python、pycharm和pip安装使用
python·macos·pycharm
AI视觉网奇3 小时前
pycharm 左右箭头 最近编辑
ide·python·pycharm
思绪无限3 小时前
Pycharm的终端无法使用Anaconda命令行问题详细解决教程
ide·python·pycharm·终端·命令行·anaconda·问题教程
漫步云端-r3 小时前
Pycharm的使用技巧总结
ide·python·pycharm
木子.李3474 小时前
排序算法总结(C++)
c++·算法·排序算法
月白风清江有声4 小时前
爆炸仿真的学习日志
人工智能