【机器学习】KNN 算法介绍

KNN(K-Nearest Neighbors)算法是一种基本的机器学习算法,用于分类和回归问题。该算法根据样本之间的距离度量,在训练数据集中找到与待分类样本最近邻的K个样本,并基于这K个样本进行分类或回归。

KNN算法的核心思想是"近朱者赤,近墨者黑",即认为距离上接近的样本在特征空间中具有相似的性质。算法执行的过程如下:

  1. 计算距离:首先,根据给定的距离度量方式(如欧氏距离、曼哈顿距离等),计算待分类样本与训练数据集中每个样本之间的距离。

  2. 选择近邻:选取与待分类样本距离最近的K个样本作为近邻。

  3. 类别判断:对于分类问题,K个近邻中出现次数最多的类别即为待分类样本的类别;对于回归问题,可以使用近邻的均值或加权平均值来预测待分类样本的值。

  4. 输出结果:将预测的类别或值作为算法的输出结果。

KNN算法的优点包括简单易懂、无需进行模型训练和参数调整、适用于多分类问题等。然而,KNN算法也存在一些限制,比如对于大规模数据集计算距离耗时、对异常值敏感、需要选取合适的K值等。

在实际应用中,为了提高KNN算法的性能,可以采用一些优化技术,如使用KD-Tree或Ball Tree等数据结构来加速最近邻搜索。

总之,KNN算法是一个简单但有效的机器学习算法,可以用于解决分类和回归问题,并且可以结合其他技术进行更复杂的任务。

相关推荐
千宇宙航5 分钟前
闲庭信步使用SV搭建图像测试平台:第三十一课——基于神经网络的手写数字识别
图像处理·人工智能·深度学习·神经网络·计算机视觉·fpga开发
IT古董8 分钟前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(4)模型评价与调整(Model Evaluation & Tuning)
神经网络·机器学习·回归
onceco33 分钟前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
森焱森1 小时前
水下航行器外形分类详解
c语言·单片机·算法·架构·无人机
QuantumStack3 小时前
【C++ 真题】P1104 生日
开发语言·c++·算法
jndingxin3 小时前
OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
人工智能·opencv·计算机视觉
Sweet锦4 小时前
零基础保姆级本地化部署文心大模型4.5开源系列
人工智能·语言模型·文心一言
写个博客4 小时前
暑假算法日记第一天
算法
绿皮的猪猪侠4 小时前
算法笔记上机训练实战指南刷题
笔记·算法·pta·上机·浙大
hie988944 小时前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab