【图像分割】基于浣熊优化算法COA的Otsu(大津法)多阈值电表数字图像分割 电表数字识别【Matlab代码#52】

文章目录


【可更换其他算法,获取资源请见文章第5节:资源获取】


1. 原始COA算法

长鼻浣熊优化算法(Cоati Optimization Algorithm,COA)是一种启发式优化算法,灵感来源于长鼻浣熊(Coati)的行为策略。长鼻浣熊优化算法基于长鼻浣熊在觅食过程中的特性和行为模式。长鼻浣熊是一种树栖动物,具有长而灵活的鼻子,用于觅食和捕食。它们通过嗅觉感知周围环境,利用敏锐的视觉和协调的运动能力来寻找食物。

1.1 开发阶段

这个阶段模拟的是浣熊对鬣蜥的攻击策略,对搜索空间中的种群更新的第一个阶段进行建模。在这个策略中,一群浣熊会爬上树,对着一只鬣蜥,并吓唬它,其他几个浣熊会在树下等待鬣蜥掉下来。当鬣蜥掉下来之后,浣熊就会攻击并猎杀它。这个策略使得COA在搜索空间中移动到不同的位置,说明COA在问题解决空间中的全局搜索能力。

在COA的设计中,种群中的最佳位置被假定为鬣蜥的位置。此外,还假设有一般的浣熊能爬上树,另一半在地上等待鬣蜥掉下来。因此,浣熊在树上的位置可以用以下公式描述:

鬣蜥落地后,将其放置在搜索空间中的任意位置。基于这种随机位置,地面上的浣熊可以在搜索空间中移动,用下列公式来描述:

对于每个浣熊计算的新位置,如果它改善了目标函数的值,那么就会被接受,否则,浣熊将保持原先的位置,此过程用以下公式来表示。这个可以被视为贪婪法则。

这里 x i P 1 x_{i}^{P1} xiP1是计算第 i i i个浣熊的新位置, x i , j P 1 x_{i,j}^{P1} xi,jP1是它的第 j j j维, F i P 1 F_{i}^{P1} FiP1是它的目标函数值, r r r是 [ 0 , 1 ] [0,1] [0,1]区间内的随机实数。 I g u a n a Iguana Iguana代表鬣蜥在搜索空间中的位置,这实际上是指种群中最佳个体的位置; I g u a n a j Iguana_{j} Iguanaj是它的第 j j j维, j j j是一个整数,从集合{1,2}中随机选择, I g u a n a G Iguana^{G} IguanaG是在地面上的位置,它是随机生成的。 I g u a n a j G Iguana_{j}^{G} IguanajG蠢晰是它的第 j j j维, F I g u a n a G F_{Iguana}^{G} FIguanaG是它的目标函数值。

1.2 探索阶段

在第二阶段即探索阶段的过程中,位置更新模拟的是浣熊在遇到捕食者和逃避捕食者的行为。当食肉动物攻击浣熊时,浣熊就会从它的位置上逃走。浣熊在该策略中的移动使其处于接近其当前位置的安全位置,这代表这COA的局部开发能力。为了模拟这种行为,COA在每个长鼻浣熊个体附近生成一个随机位置,公式如下所示:

与开发阶段中类似,同样使用贪婪选择来决定是替换还是保留原先的位置。

2. 多阈值Otsu原理

ostu方法使用最大化类间方差(intra-class variance, ICV)作为评价准则,利用对图像直方图的计算,可以得到最优的一组阈值组合。

ostu方法不仅适用于单阈值的情况,它可以扩展到多阈值。假设有k个分类,c1,c2,...,ck时,他们之间的类间方差定义为:

比如,k=3时,将原图像的灰度区间分为3个类,此时需要两个阈值,定义类间方差如下:

上面式子中,k1和k2为待确定的两个阈值,使得类间方差最大化的k1和k2就是最优的一组阈值。

对于多阈值的情况,可以采用群智能优化算法来寻找最优的阈值,本篇博客利用蜣螂优化算法来寻找最优的阈值。

3. 部分代码展示

matlab 复制代码
%% 清空环境
clc
clear 
close all

%%
img = imread('1.JPG');
%绘制原图
figure
imshow(img);
title('原图')

img_ori=rgb2gray(img);
img=rgb2gray(img);
figure
%灰度直方图
imhist(img)
title('灰度直方图')
%目标函数
fitness=@(X)OTSU(img,X);

%阈值个数,优化下边界,上边界,最大迭代次数,种群数量。
num_Threshold=3;
lb=0;
ub=255;
max_iter=100;
sizepop=20;
%调用优化算法
%调用COA对阈值寻优

4. 仿真结果展示




matlab 复制代码
最大类间方差为:1587.0666
COA优化算法优化得到的阈值分别为:148   87   47

5. 资源获取

可以获取完整代码资源

相关推荐
摘星编程12 分钟前
CANN内存管理机制:从分配策略到性能优化
人工智能·华为·性能优化
唯唯qwe-12 分钟前
Day23:动态规划 | 爬楼梯,不同路径,拆分
算法·leetcode·动态规划
likerhood19 分钟前
3. pytorch中数据集加载和处理
人工智能·pytorch·python
Robot侠20 分钟前
ROS1从入门到精通 10:URDF机器人建模(从零构建机器人模型)
人工智能·机器人·ros·机器人操作系统·urdf机器人建模
haiyu_y21 分钟前
Day 46 TensorBoard 使用介绍
人工智能·深度学习·神经网络
阿里云大数据AI技术25 分钟前
DataWorks 又又又升级了,这次我们通过 Arrow 列存格式让数据同步速度提升10倍!
大数据·人工智能
做科研的周师兄26 分钟前
中国土壤有机质数据集
人工智能·算法·机器学习·分类·数据挖掘
IT一氪28 分钟前
一款 AI 驱动的 Word 文档翻译工具
人工智能·word
lovingsoft31 分钟前
Vibe coding 氛围编程
人工智能
百***074536 分钟前
GPT-Image-1.5 极速接入全流程及关键要点
人工智能·gpt·计算机视觉