Pytorch个人学习记录总结 07

目录

神经网络-非线性激活

神经网络-线形层及其他层介绍


神经网络-非线性激活

官方文档地址:torch.nn --- PyTorch 2.0 documentation

常用的:Sigmoid、ReLU、LeakyReLU等。

作用:为模型引入非线性特征,这样才能在训练过程中训练出符合更多特征的模型。

其中有个参数是inplace,默认为False,表示是否就地改变输入值 ,True则表示直接改变了input不再有另外的返回值;False则没有直接改变input并有返回值(建议是inplace=False)。

python 复制代码
import torch
from torch import nn

input = torch.tensor([[3, -1],
                      [-0.5, 1]])
input = torch.reshape(input, (1, 1, 2, 2))

relu = nn.ReLU()
input_relu = relu(input)

print('input={}\ninput_relu:{}'.format(input, input_relu))

# input=tensor([[[[ 3.0000, -1.0000],
#           [-0.5000,  1.0000]]]])
# input_relu:tensor([[[[3., 0.],
#           [0., 1.]]]])

神经网络-线形层及其他层介绍

Linear Layers中的torch.nn.Linear(in_features, out_features, bias=True)。默认bias=True。对传入数据应用线性变换

Parameters

  • in_features -- size of each input sample(每个输入样本的大小)
  • out_features -- size of each output sample(每个输出样本的大小)
  • bias -- If set to False, the layer will not learn an additive bias. Default: True(如果为False,则该层不会学习加法偏置,默认为true)

Shape :分别关注输入、输出的最后一个维度 的大小,在训练过程中,nn.Linear往往是当作的展平为一维后最后几步的全连接层,所以此时就只关注了通道数,即往往Input和Outputs是一维的)

"展平为一维"经常用到torch.nn.Flatten(start_dim=1, end_dim=- 1)

想说一下start_dim,它表示"从start_dim开始把后面的维度都展平到同一维度上",默认是是1,在实际训练中从start_dim=1开始展平,因为在训练中的tensor是4维的,分别是[batch_size, C, H, W],而第0维的batch_size不能动它,所以是从1开始的。

还比较重要的有:torch.nn.BatchNorm2dtorch.nn.DropoutLoss Functions(之后再讲)。其它的Transformer Layers、Recurrent Layers都不是很常用。

python 复制代码
import torch

# 对4维tensor展平,start_dim=1

input = torch.arange(54)
input = torch.reshape(input, (2, 3, 3, 3))

y_0 = torch.flatten(input)
y_1 = torch.flatten(input, start_dim=1)

print(input.shape)
print(y_0.shape)
print(y_1.shape)

# torch.Size([2, 3, 3, 3])
# torch.Size([54])
# torch.Size([2, 27])
相关推荐
2501_9262279411 分钟前
.Net程序员就业现状以及学习路线图(五)
学习·.net
Elastic 中国社区官方博客13 分钟前
Elasticsearch:智能搜索的 MCP
大数据·人工智能·elasticsearch·搜索引擎·全文检索
stbomei17 分钟前
从“能说话”到“会做事”:AI Agent如何重构日常工作流?
人工智能
yzx9910131 小时前
生活在数字世界:一份人人都能看懂的网络安全生存指南
运维·开发语言·网络·人工智能·自动化
许泽宇的技术分享2 小时前
LangGraph深度解析:构建下一代智能Agent的架构革命——从Pregel到现代AI工作流的技术飞跃
人工智能·架构
乔巴先生242 小时前
LLMCompiler:基于LangGraph的并行化Agent架构高效实现
人工智能·python·langchain·人机交互
张子夜 iiii3 小时前
实战项目-----Python+OpenCV 实现对视频的椒盐噪声注入与实时平滑还原”
开发语言·python·opencv·计算机视觉
静西子3 小时前
LLM大语言模型部署到本地(个人总结)
人工智能·语言模型·自然语言处理
cxr8283 小时前
基于Claude Code的 规范驱动开发(SDD)指南
人工智能·hive·驱动开发·敏捷流程·智能体
Billy_Zuo3 小时前
人工智能机器学习——决策树、异常检测、主成分分析(PCA)
人工智能·决策树·机器学习