【图论】强连通分量

一.定义

强连通分量(Strongly Connected Components,简称SCC)是图论中的一个概念,用于描述有向图中的一组顶点,其中任意两个顶点之间都存在一条有向路径。换句话说,对于图中的任意两个顶点u和v,如果存在一条从u到v的有向路径,同时也存在一条从v到u的有向路径,那么u和v就属于同一个强连通分量。

强连通分量在许多图算法中都有重要的应用,比如强连通分量的计算可以用于解决图的可达性问题、强连通分量的缩点可以用于求解最小生成树等。

注意:强连通分量是有向图!


二.例题

P2661 [NOIP2015 提高组] 信息传递 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)


三.思路

我们可以易知可以求得最小环即可。也可以说要求最小强连通分量。

这里可以用tarjan算法实现


四.参考代码

cpp 复制代码
#include<bits/stdc++.h>
#define maxn 200005
using namespace std;
int n,dfn[maxn],low[maxn],tot;
//链式前向星
int cnt,head[maxn];
struct Edge{
	int u,v,next;
}edge[maxn];
void add(int u,int v){
	edge[++cnt]=(Edge){u,v,head[u]}; head[u]=cnt;
}
vector<int> it[maxn];
int sta[maxn],ins[maxn],top,ls; //栈和是否入栈 
void tarjan(int u){
	dfn[u]=low[u]=++tot;
	sta[top++]=u;
	ins[u]=1;
	for(int i=head[u];i;i=edge[i].next){
		int v=edge[i].v;
		if(dfn[v]==0){
			tarjan(v);
			low[u]=min(low[u],low[v]);
		}else if(ins[v]){
			low[u]=min(low[u],dfn[v]);
		}
	}
	int j=0;
	//已经构成环 
	if(dfn[u]==low[u]){
		ls++;
		while(1){
			j=sta[--top];
			ins[j]=0;
			it[ls].push_back(j);
			if(u==j) break;
		}
	}
}
int main(){
	scanf("%d",&n);
	int k;
	for(int i=1;i<=n;i++){
		scanf("%d",&k);
		add(i,k);
	}
	for(int i=1;i<=n;i++){
		if(dfn[i]==0) tarjan(i);
	}
	int ans=0x7fffffff;
	for(int i=1;i<=ls;i++){
		int x=it[i].size();
		if(x>1) ans=min(ans,x);
	}
	cout<<ans;
	return 0;
}
相关推荐
BB_CC_DD26 分钟前
四. 以Annoy算法建树的方式聚类清洗图像数据集,一次建树,无限次聚类搜索,提升聚类搜索效率。(附完整代码)
深度学习·算法·聚类
YHY_13s30 分钟前
访问者模式
c++·访问者模式
我也不曾来过11 小时前
list底层原理
数据结构·c++·list
A charmer1 小时前
C++ 日志系统实战第三步:熟悉掌握各种设计模式
c++·日志系统
Ethon_王1 小时前
STL容器适配器详解:queue篇
c++
静听夜半雨1 小时前
CANoe入门——3、新建LIN工程及LIN DataBase(LDF文件)的创建
网络·数据库·c++·编辑器
梁下轻语的秋缘2 小时前
每日c/c++题 备战蓝桥杯 ([洛谷 P1226] 快速幂求模题解)
c++·算法·蓝桥杯
CODE_RabbitV2 小时前
【深度强化学习 DRL 快速实践】逆向强化学习算法 (IRL)
算法
虾球xz2 小时前
游戏引擎学习第244天: 完成异步纹理下载
c++·学习·游戏引擎
矛取矛求2 小时前
C++区别于C语言的提升用法(万字总结)
c语言·c++