自定义MyDataSet获取数据及对应label

自定义MyDataSet获取数据及对应label

实例化数据集需要用到 DataSet 类,我们可以自定义来实现对数据集的处理

MyDataSet类代码如下:

python 复制代码
from PIL import Image
import torch
from torch.utils.data import Dataset

class MyDataSet(Dataset):
    """自定义数据集"""

    def __init__(self, images_path: list, images_class: list, transform=None):
        self.images_path = images_path
        self.images_class = images_class
        self.transform = transform

    def __len__(self):
        return len(self.images_path)
        
	# 获取item对象图像和类别,只对img进行预处理,label不处理
    def __getitem__(self, item):
        img = Image.open(self.images_path[item])
        # RGB为彩色图片,L为灰度图片
        if img.mode != 'RGB':
            raise ValueError("image: {} isn't RGB mode.".format(self.images_path[item]))
        label = self.images_class[item]

        if self.transform is not None:
            img = self.transform(img)

        return img, label

    @staticmethod
    def collate_fn(batch):
        # 官方实现的default_collate可以参考
        # https://github.com/pytorch/pytorch/blob/67b7e751e6b5931a9f45274653f4f653a4e6cdf6/torch/utils/data/_utils/collate.py
        # zip(*batch):处理一个batch内的图片,图片为一组,标签为一组
        images, labels = tuple(zip(*batch))

        images = torch.stack(images, dim=0)	# 增加batch维度
        labels = torch.as_tensor(labels)	#将labels转化为tensor,images在__getitem__方法的transform已经转化为tensor
        return images, labels

定义好MyDataSet后,就可以在train类中引用了,具体代码如下:

python 复制代码
from my_dataset import MyDataSet

# 省略其他代码......

# 这里定义了train和val两种预处理方法
data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(224),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
        "val": transforms.Compose([transforms.Resize(256),
                                   transforms.CenterCrop(224),
                                   transforms.ToTensor(),
                                   transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])}
                                   
# MyDataSet实例化训练数据集
    train_dataset = MyDataSet(images_path=train_images_path,
                              images_class=train_images_label,
                              transform=data_transform["train"])

# 省略其他代码......

从而实现了在train类中获取一个batch的数据,且该数据为图像一组和label一组,同时经过预处理的数据

相关推荐
我爱一条柴ya6 小时前
【AI大模型】神经网络反向传播:核心原理与完整实现
人工智能·深度学习·神经网络·ai·ai编程
慕婉03076 小时前
深度学习概述
人工智能·深度学习
19896 小时前
【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·近邻算法
神经星星6 小时前
新加坡国立大学基于多维度EHR数据实现细粒度患者队列建模,住院时间预测准确率提升16.3%
人工智能·深度学习·机器学习
TY-20256 小时前
深度学习——神经网络1
人工智能·深度学习·神经网络
cver1237 小时前
CSGO 训练数据集介绍-2,427 张图片 AI 游戏助手 游戏数据分析
人工智能·深度学习·yolo·目标检测·游戏·计算机视觉
FreeBuf_7 小时前
新型BERT勒索软件肆虐:多线程攻击同时针对Windows、Linux及ESXi系统
人工智能·深度学习·bert
强哥之神8 小时前
Meta AI 推出 Multi - SpatialMLLM:借助多模态大语言模型实现多帧空间理解
人工智能·深度学习·计算机视觉·语言模型·自然语言处理·llama
慕婉03079 小时前
Tensor自动微分
人工智能·pytorch·python
神经星星10 小时前
专治AI审稿?论文暗藏好评提示词,谢赛宁呼吁关注AI时代科研伦理的演变
人工智能·深度学习·机器学习