文章目录
68. 文本左右对齐:
给定一个单词数组 words
和一个长度 maxWidth
,重新排版单词,使其成为每行恰好有 maxWidth
个字符,且左右两端对齐的文本。
你应该使用 "贪心算法" 来放置给定的单词;也就是说,尽可能多地往每行中放置单词。必要时可用空格 ' '
填充,使得每行恰好有 maxWidth 个字符。
要求尽可能均匀分配单词间的空格数量。如果某一行单词间的空格不能均匀分配,则左侧放置的空格数要多于右侧的空格数。
文本的最后一行应为左对齐,且单词之间不插入额外的空格。
注意:
- 单词是指由非空格字符组成的字符序列。
- 每个单词的长度大于 0,小于等于 maxWidth。
- 输入单词数组
words
至少包含一个单词。
样例 1:
输入:
words = ["This", "is", "an", "example", "of", "text", "justification."], maxWidth = 16
输出:
[
"This is an",
"example of text",
"justification. "
]
样例 2:
输入:
words = ["What","must","be","acknowledgment","shall","be"], maxWidth = 16
输出:
[
"What must be",
"acknowledgment ",
"shall be "
]
解释:
注意最后一行的格式应为 "shall be " 而不是 "shall be",
因为最后一行应为左对齐,而不是左右两端对齐。
第二行同样为左对齐,这是因为这行只包含一个单词。
样例 3:
输入:
words = ["Science","is","what","we","understand","well","enough","to","explain","to","a","computer.","Art","is","everything","else","we","do"],maxWidth = 20
输出:
[
"Science is what we",
"understand well",
"enough to explain to",
"a computer. Art is",
"everything else we",
"do "
]
提示:
1 <= words.length <= 300
1 <= words[i].length <= 20
words[i]
由小写英文字母和符号组成1 <= maxWidth <= 100
words[i].length <= maxWidth
分析:
- 面对这道算法题目,二当家的再次陷入了沉思。
- 首先要仔细理解题目的意思。
- 每行有最大宽度,在宽度范围内尽可能多的放置单词,单词间的空格尽可能平均,也就是最大差一个空格,而且多的空格要都在左面的单词之间。
- 不难理解,但是实现起来有很多细节,比较繁琐,容易出错,应该尽量复用方法或者函数。
- 我们需要一个在单词之间填充指定个数空格的方法或者函数,可以拆分为拼装指定个数个空格为字符串的方法或者函数,以及在单词之间插入指定字符串的方法或者函数,这样很多地方可以复用。
题解:
rust:
rust
impl Solution {
pub fn full_justify(words: Vec<String>, max_width: i32) -> Vec<String> {
// blank 返回长度为 n 的由空格组成的字符串
fn blank(n: usize) -> String {
(0..n).map(|_| {
' '
}).collect()
}
// join 返回用 sep 拼接 [left, right) 范围内的 words 组成的字符串
fn join(words: &Vec<String>, left: usize, right: usize, sep: &str) -> String {
let mut str = String::from(words[left].as_str());
(left + 1..right).for_each(|i| {
str.push_str(sep);
str.push_str(words[i].as_str());
});
return str;
}
let max_width = max_width as usize;
let mut ans = Vec::new();
let (mut right, n) = (0, words.len());
loop {
let left = right; // 当前行的第一个单词在 words 的位置
let mut sum_len = 0; // 统计这一行单词长度之和
// 循环确定当前行可以放多少单词,注意单词之间应至少有一个空格
while right < n && sum_len + words[right].len() + right - left <= max_width {
sum_len += words[right].len();
right += 1;
}
// 当前行是最后一行:单词左对齐,且单词之间应只有一个空格,在行末填充剩余空格
if right == n {
let mut row = join(&words, left, n, " ");
row.push_str(blank(max_width - row.len()).as_str());
ans.push(row);
return ans;
}
let num_words = right - left;
let num_spaces = max_width - sum_len;
// 当前行只有一个单词:该单词左对齐,在行末填充剩余空格
if num_words == 1 {
let mut row = String::from(words[left].as_str());
row.push_str(blank(num_spaces).as_str());
ans.push(row);
continue;
}
// 当前行不只一个单词
let avg_spaces = num_spaces / (num_words - 1);
let extra_spaces = num_spaces % (num_words - 1);
let mut row = String::new();
row.push_str(join(&words, left, left + extra_spaces + 1, blank(avg_spaces + 1).as_str()).as_str()); // 拼接额外加一个空格的单词
row.push_str(blank(avg_spaces).as_str());
row.push_str(join(&words, left + extra_spaces + 1, right, blank(avg_spaces).as_str()).as_str()); // 拼接其余单词
ans.push(row);
}
}
}
go:
go
func fullJustify(words []string, maxWidth int) (ans []string) {
blank := func(n int) string {
return strings.Repeat(" ", n)
}
right, n := 0, len(words)
for {
left := right // 当前行的第一个单词在 words 的位置
sumLen := 0 // 统计这一行单词长度之和
// 循环确定当前行可以放多少单词,注意单词之间应至少有一个空格
for right < n && sumLen+len(words[right])+right-left <= maxWidth {
sumLen += len(words[right])
right++
}
// 当前行是最后一行:单词左对齐,且单词之间应只有一个空格,在行末填充剩余空格
if right == n {
s := strings.Join(words[left:], " ")
ans = append(ans, s+blank(maxWidth-len(s)))
return
}
numWords := right - left
numSpaces := maxWidth - sumLen
// 当前行只有一个单词:该单词左对齐,在行末填充剩余空格
if numWords == 1 {
ans = append(ans, words[left]+blank(numSpaces))
continue
}
// 当前行不只一个单词
avgSpaces := numSpaces / (numWords - 1)
extraSpaces := numSpaces % (numWords - 1)
s1 := strings.Join(words[left:left+extraSpaces+1], blank(avgSpaces+1)) // 拼接额外加一个空格的单词
s2 := strings.Join(words[left+extraSpaces+1:right], blank(avgSpaces)) // 拼接其余单词
ans = append(ans, s1+blank(avgSpaces)+s2)
}
}
c++:
cpp
class Solution {
private:
// blank 返回长度为 n 的由空格组成的字符串
string blank(int n) {
return string(n, ' ');
}
// join 返回用 sep 拼接 [left, right) 范围内的 words 组成的字符串
string join(vector<string> &words, int left, int right, string sep) {
string s = words[left];
for (int i = left + 1; i < right; ++i) {
s += sep + words[i];
}
return s;
}
public:
vector<string> fullJustify(vector<string>& words, int maxWidth) {
vector<string> ans;
int right = 0, n = words.size();
while (true) {
int left = right; // 当前行的第一个单词在 words 的位置
int sumLen = 0; // 统计这一行单词长度之和
// 循环确定当前行可以放多少单词,注意单词之间应至少有一个空格
while (right < n && sumLen + words[right].length() + right - left <= maxWidth) {
sumLen += words[right++].length();
}
// 当前行是最后一行:单词左对齐,且单词之间应只有一个空格,在行末填充剩余空格
if (right == n) {
string s = join(words, left, n, " ");
ans.emplace_back(s + blank(maxWidth - s.length()));
return ans;
}
int numWords = right - left;
int numSpaces = maxWidth - sumLen;
// 当前行只有一个单词:该单词左对齐,在行末填充剩余空格
if (numWords == 1) {
ans.emplace_back(words[left] + blank(numSpaces));
continue;
}
// 当前行不只一个单词
int avgSpaces = numSpaces / (numWords - 1);
int extraSpaces = numSpaces % (numWords - 1);
string s1 = join(words, left, left + extraSpaces + 1, blank(avgSpaces + 1)); // 拼接额外加一个空格的单词
string s2 = join(words, left + extraSpaces + 1, right, blank(avgSpaces)); // 拼接其余单词
ans.emplace_back(s1 + blank(avgSpaces) + s2);
}
}
};
python:
python
class Solution:
def fullJustify(self, words: List[str], maxWidth: int) -> List[str]:
def blank(n: int) -> str:
return ' ' * n
ans = []
right, n = 0, len(words)
while True:
left = right # 当前行的第一个单词在 words 的位置
sum_len = 0 # 统计这一行单词长度之和
# 循环确定当前行可以放多少单词,注意单词之间应至少有一个空格
while right < n and sum_len + len(words[right]) + right - left <= maxWidth:
sum_len += len(words[right])
right += 1
# 当前行是最后一行:单词左对齐,且单词之间应只有一个空格,在行末填充剩余空格
if right == n:
s = " ".join(words[left:])
ans.append(s + blank(maxWidth - len(s)))
break
num_words = right - left
num_spaces = maxWidth - sum_len
# 当前行只有一个单词:该单词左对齐,在行末填充空格
if num_words == 1:
ans.append(words[left] + blank(num_spaces))
continue
# 当前行不只一个单词
avg_spaces = num_spaces // (num_words - 1)
extra_spaces = num_spaces % (num_words - 1)
s1 = blank(avg_spaces + 1).join(words[left:left + extra_spaces + 1]) # 拼接额外加一个空格的单词
s2 = blank(avg_spaces).join(words[left + extra_spaces + 1:right]) # 拼接其余单词
ans.append(s1 + blank(avg_spaces) + s2)
return ans
java:
java
class Solution {
public List<String> fullJustify(String[] words, int maxWidth) {
List<String> ans = new ArrayList<String>();
int right = 0, n = words.length;
while (true) {
int left = right; // 当前行的第一个单词在 words 的位置
int sumLen = 0; // 统计这一行单词长度之和
// 循环确定当前行可以放多少单词,注意单词之间应至少有一个空格
while (right < n && sumLen + words[right].length() + right - left <= maxWidth) {
sumLen += words[right++].length();
}
// 当前行是最后一行:单词左对齐,且单词之间应只有一个空格,在行末填充剩余空格
if (right == n) {
StringBuilder sb = join(words, left, n, " ");
sb.append(blank(maxWidth - sb.length()));
ans.add(sb.toString());
return ans;
}
int numWords = right - left;
int numSpaces = maxWidth - sumLen;
// 当前行只有一个单词:该单词左对齐,在行末填充剩余空格
if (numWords == 1) {
StringBuilder sb = new StringBuilder(words[left]);
sb.append(blank(numSpaces));
ans.add(sb.toString());
continue;
}
// 当前行不只一个单词
int avgSpaces = numSpaces / (numWords - 1);
int extraSpaces = numSpaces % (numWords - 1);
StringBuilder sb = new StringBuilder();
sb.append(join(words, left, left + extraSpaces + 1, blank(avgSpaces + 1))); // 拼接额外加一个空格的单词
sb.append(blank(avgSpaces));
sb.append(join(words, left + extraSpaces + 1, right, blank(avgSpaces))); // 拼接其余单词
ans.add(sb.toString());
}
}
// blank 返回长度为 n 的由空格组成的字符串
private StringBuilder blank(int n) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < n; ++i) {
sb.append(' ');
}
return sb;
}
// join 返回用 sep 拼接 [left, right) 范围内的 words 组成的字符串
private StringBuilder join(String[] words, int left, int right, CharSequence sep) {
StringBuilder sb = new StringBuilder(words[left]);
for (int i = left + 1; i < right; ++i) {
sb.append(sep);
sb.append(words[i]);
}
return sb;
}
}
非常感谢你阅读本文~
欢迎【点赞】【收藏】【评论】三连走一波~
放弃不难,但坚持一定很酷~
希望我们大家都能每天进步一点点~
本文由 二当家的白帽子:https://le-yi.blog.csdn.net/ 博客原创~