路径规划 | 详解维诺图Voronoi算法(附ROS C++/Python/Matlab仿真)

目录

  • [0 专栏介绍](#0 专栏介绍)
  • [1 维诺图规划原理](#1 维诺图规划原理)
  • [2 ROS C++实现(栅格图搜索)](#2 ROS C++实现(栅格图搜索))
  • [3 Python实现(路图搜索)](#3 Python实现(路图搜索))
  • [4 Matlab实现(路图搜索)](#4 Matlab实现(路图搜索))

0 专栏介绍

🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。

🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法


1 维诺图规划原理

地图结构 | 图解维诺图Voronoi原理(附C++/Python/Matlab仿真)中,我们介绍了维诺图的概念。维诺图(Voronoi Diagram),也称为泰森多边形(Thiessen Polygon),是一种用于将空间分割为一组区域的图形化方法,其中每个区域都由一个特定点(种子点)控制,使得每个点到其控制的种子点最近。

在路径规划领域,维诺图作为一种栅格图分解方法用于自主导航任务。与计算几何的概念类似,令离散点集为障碍栅格,则定义规划空间中离最近的两个障碍物具有相同距离的点集为广义维诺图(Generalized Voronoi Diagram, GVD)。GVD通过对空间划分有效减少了路径搜索维度,且沿着GVD边缘移动可确保在穿越障碍物时具有最大的安全间隙

建立维诺图后,搜索对象从全域栅格节点减少为维诺节点,搜索效率提高。基于维诺图的路径规划虽然不满足路径最优,但可以最大程度保证运动安全。总体来说,基于维诺图的路径规划分为两部分:

  1. 根据栅格地图建立维诺图
  2. 在维诺图上运用最短路算法

这里提供两种常见的算法流程:栅格图搜索路图搜索,其中维诺图的构造算法详见地图结构 | 图解维诺图Voronoi原理(附C++/Python/Matlab仿真),本文不再赘述

接下来对这两种算法进行实现

2 ROS C++实现(栅格图搜索)

核心算法如下所示

cpp 复制代码
bool VoronoiPlanner::plan(VoronoiData** voronoi_diagram, const Node& start, const Node& goal, std::vector<Node>& path)
{
  voronoi_diagram_ = voronoi_diagram;

  // clear vector
  path.clear();

  // start/goal to Voronoi Diagram, shortest path in Voronoi Diagram
  std::vector<Node> path_s, path_g, path_v;

  // start/goal point in Voronoi Diagram
  Node v_start, v_goal;

  if (!searchPathWithVoronoi(start, goal, path_s, &v_start))
    return false;

  if (!searchPathWithVoronoi(goal, start, path_g, &v_goal))
    return false;
  std::reverse(path_g.begin(), path_g.end());

  if (!searchPathWithVoronoi(v_start, v_goal, path_v))
    return false;

  path_g.insert(path_g.end(), path_v.begin(), path_v.end());
  path_g.insert(path_g.end(), path_s.begin(), path_s.end());
  path = path_g;

  return true;
}

效果如下

3 Python实现(路图搜索)

核心代码如下:

python 复制代码
def plan(self):
	# sampling voronoi diagram
	vor = Voronoi(np.array(list(self.env.obstacles)))
	vx_list = [ix for [ix, _] in vor.vertices] + [self.start.x, self.goal.x]
	vy_list = [iy for [_, iy] in vor.vertices] + [self.start.y, self.goal.y]
	sample_num = len(vx_list)
	expand = [Node((vx_list[i], vy_list[i])) for i in range(sample_num)]
	
	# generate road map for voronoi nodes
	road_map = {}
	node_tree = cKDTree(np.vstack((vx_list, vy_list)).T)
	
	for node in expand:
	    edges = []
	    _, index_list = node_tree.query([node.x, node.y], k=sample_num)
	
	    for i in range(1, len(index_list)):
	        node_n = expand[index_list[i]]
	
	        if not self.isCollision(node, node_n):
	            edges.append(node_n)
	
	        if len(edges) >= self.n_knn:
	            break
	
	    road_map[node] = edges
	
	# calculate shortest path using graph search algorithm
	cost, path = self.getShortestPath(road_map)
	return cost, path, expand

效果如下:

4 Matlab实现(路图搜索)

matlab 复制代码
function [path, goal_reached, cost, EXPAND] = voronoi_plan(map, start, goal)
    % Maximum expansion distance one step
    max_dist = 3;
    % map size
    [y_range, x_range] = size(map);
    % resolution
    resolution = 0.1;
    % number of edges from one sampled point
    n_knn = 5;
    
    % construct Voronoi diagram
    [ox, oy] = find(map == 2);
    [vx, vy] = voronoi(oy, ox);
    start(:, [1 2]) = start(:, [2 1]);
    goal(:, [1 2]) = goal(:, [2 1]);

    % Voronoi diagram filter
    index_x = intersect(find(vx(1, :) > 0 & vx(1, :) < x_range), ...
                                     find(vx(2, :) > 0 & vx(2, :) < x_range));
    index_y = intersect(find(vy(1, :) > 0 & vy(1, :) < y_range), ...
                                     find(vy(2, :) > 0 & vy(2, :) < y_range));
    index = intersect(index_x, index_y);
    vx = vx(:, index); vy = vy(:, index);
    vd_vertex = [];
    EXPAND = [];
    for i = 1:length(index)
        node1 = [vx(1, i), vy(1, i)];
        node2 = [vx(2, i), vy(2, i)]; 

        if ~all(node1 == node2) && ~is_collision(node1, node2, map, -1, resolution)
            EXPAND = [EXPAND, [vx(:, i); vy(:, i)]];
            vd_vertex = [vd_vertex; [vx(:, i), vy(:, i)]];
        end
    end
    vd_vertex = [unique(vd_vertex, 'rows'); start; goal];
    
    % generate road map for voronoi nodes
    road_map = containers.Map();
    num_vd = size(vd_vertex, 1);
    for i = 1:num_vd
        knn_nodes = vd_vertex(knnsearch(vd_vertex, vd_vertex(i, :), 'K', num_vd), :);
        edges = [];
        for j = 1:num_vd
            if ~is_collision(vd_vertex(i, :), knn_nodes(j, :), map, max_dist, resolution)
                edges = [edges; knn_nodes(j, :)];
            end
            if size(edges, 1) == n_knn
                break;
            end
        end
        % hash-map: from grid index to edges
        road_map(string(vd_vertex(i, 1) + x_range * vd_vertex(i, 2))) = edges;
    end

    [path, goal_reached, cost] = get_shortest_path(road_map, start, goal, map, max_dist, resolution);
    if goal_reached
        path(:, [1 2]) = path(:, [2 1]);
    else
        path = [];
        cost = 0;
    end
end

效果如下:

完整工程代码请联系下方博主名片获取


🔥 更多精彩专栏

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

相关推荐
JoySSLLian4 小时前
手把手教你安装免费SSL证书(附宝塔/Nginx/Apache配置教程)
网络·人工智能·网络协议·tcp/ip·nginx·apache·ssl
BestSongC4 小时前
行人摔倒检测系统 - 前端文档(1)
前端·人工智能·目标检测
模型时代4 小时前
Anthropic明确拒绝在Claude中加入广告功能
人工智能·microsoft
夕小瑶4 小时前
OpenClaw、Moltbook爆火,算力如何48小时内扩到1900张卡
人工智能
一枕眠秋雨>o<4 小时前
透视算力:cann-tools如何让AI性能调优从玄学走向科学
人工智能
那个村的李富贵5 小时前
昇腾CANN跨行业实战:五大新领域AI落地案例深度解析
人工智能·aigc·cann
集简云-软件连接神器5 小时前
技术实战:集简云语聚AI实现小红书私信接入AI大模型全流程解析
人工智能·小红书·ai客服
松☆5 小时前
深入理解CANN:面向AI加速的异构计算架构
人工智能·架构
rainbow7242445 小时前
无基础学AI的入门核心,从基础工具和理论开始学
人工智能
子榆.5 小时前
CANN 与主流 AI 框架集成:从 PyTorch/TensorFlow 到高效推理的无缝迁移指南
人工智能·pytorch·tensorflow