路径规划 | 详解维诺图Voronoi算法(附ROS C++/Python/Matlab仿真)

目录

  • [0 专栏介绍](#0 专栏介绍)
  • [1 维诺图规划原理](#1 维诺图规划原理)
  • [2 ROS C++实现(栅格图搜索)](#2 ROS C++实现(栅格图搜索))
  • [3 Python实现(路图搜索)](#3 Python实现(路图搜索))
  • [4 Matlab实现(路图搜索)](#4 Matlab实现(路图搜索))

0 专栏介绍

🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。

🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法


1 维诺图规划原理

地图结构 | 图解维诺图Voronoi原理(附C++/Python/Matlab仿真)中,我们介绍了维诺图的概念。维诺图(Voronoi Diagram),也称为泰森多边形(Thiessen Polygon),是一种用于将空间分割为一组区域的图形化方法,其中每个区域都由一个特定点(种子点)控制,使得每个点到其控制的种子点最近。

在路径规划领域,维诺图作为一种栅格图分解方法用于自主导航任务。与计算几何的概念类似,令离散点集为障碍栅格,则定义规划空间中离最近的两个障碍物具有相同距离的点集为广义维诺图(Generalized Voronoi Diagram, GVD)。GVD通过对空间划分有效减少了路径搜索维度,且沿着GVD边缘移动可确保在穿越障碍物时具有最大的安全间隙

建立维诺图后,搜索对象从全域栅格节点减少为维诺节点,搜索效率提高。基于维诺图的路径规划虽然不满足路径最优,但可以最大程度保证运动安全。总体来说,基于维诺图的路径规划分为两部分:

  1. 根据栅格地图建立维诺图
  2. 在维诺图上运用最短路算法

这里提供两种常见的算法流程:栅格图搜索路图搜索,其中维诺图的构造算法详见地图结构 | 图解维诺图Voronoi原理(附C++/Python/Matlab仿真),本文不再赘述

接下来对这两种算法进行实现

2 ROS C++实现(栅格图搜索)

核心算法如下所示

cpp 复制代码
bool VoronoiPlanner::plan(VoronoiData** voronoi_diagram, const Node& start, const Node& goal, std::vector<Node>& path)
{
  voronoi_diagram_ = voronoi_diagram;

  // clear vector
  path.clear();

  // start/goal to Voronoi Diagram, shortest path in Voronoi Diagram
  std::vector<Node> path_s, path_g, path_v;

  // start/goal point in Voronoi Diagram
  Node v_start, v_goal;

  if (!searchPathWithVoronoi(start, goal, path_s, &v_start))
    return false;

  if (!searchPathWithVoronoi(goal, start, path_g, &v_goal))
    return false;
  std::reverse(path_g.begin(), path_g.end());

  if (!searchPathWithVoronoi(v_start, v_goal, path_v))
    return false;

  path_g.insert(path_g.end(), path_v.begin(), path_v.end());
  path_g.insert(path_g.end(), path_s.begin(), path_s.end());
  path = path_g;

  return true;
}

效果如下

3 Python实现(路图搜索)

核心代码如下:

python 复制代码
def plan(self):
	# sampling voronoi diagram
	vor = Voronoi(np.array(list(self.env.obstacles)))
	vx_list = [ix for [ix, _] in vor.vertices] + [self.start.x, self.goal.x]
	vy_list = [iy for [_, iy] in vor.vertices] + [self.start.y, self.goal.y]
	sample_num = len(vx_list)
	expand = [Node((vx_list[i], vy_list[i])) for i in range(sample_num)]
	
	# generate road map for voronoi nodes
	road_map = {}
	node_tree = cKDTree(np.vstack((vx_list, vy_list)).T)
	
	for node in expand:
	    edges = []
	    _, index_list = node_tree.query([node.x, node.y], k=sample_num)
	
	    for i in range(1, len(index_list)):
	        node_n = expand[index_list[i]]
	
	        if not self.isCollision(node, node_n):
	            edges.append(node_n)
	
	        if len(edges) >= self.n_knn:
	            break
	
	    road_map[node] = edges
	
	# calculate shortest path using graph search algorithm
	cost, path = self.getShortestPath(road_map)
	return cost, path, expand

效果如下:

4 Matlab实现(路图搜索)

matlab 复制代码
function [path, goal_reached, cost, EXPAND] = voronoi_plan(map, start, goal)
    % Maximum expansion distance one step
    max_dist = 3;
    % map size
    [y_range, x_range] = size(map);
    % resolution
    resolution = 0.1;
    % number of edges from one sampled point
    n_knn = 5;
    
    % construct Voronoi diagram
    [ox, oy] = find(map == 2);
    [vx, vy] = voronoi(oy, ox);
    start(:, [1 2]) = start(:, [2 1]);
    goal(:, [1 2]) = goal(:, [2 1]);

    % Voronoi diagram filter
    index_x = intersect(find(vx(1, :) > 0 & vx(1, :) < x_range), ...
                                     find(vx(2, :) > 0 & vx(2, :) < x_range));
    index_y = intersect(find(vy(1, :) > 0 & vy(1, :) < y_range), ...
                                     find(vy(2, :) > 0 & vy(2, :) < y_range));
    index = intersect(index_x, index_y);
    vx = vx(:, index); vy = vy(:, index);
    vd_vertex = [];
    EXPAND = [];
    for i = 1:length(index)
        node1 = [vx(1, i), vy(1, i)];
        node2 = [vx(2, i), vy(2, i)]; 

        if ~all(node1 == node2) && ~is_collision(node1, node2, map, -1, resolution)
            EXPAND = [EXPAND, [vx(:, i); vy(:, i)]];
            vd_vertex = [vd_vertex; [vx(:, i), vy(:, i)]];
        end
    end
    vd_vertex = [unique(vd_vertex, 'rows'); start; goal];
    
    % generate road map for voronoi nodes
    road_map = containers.Map();
    num_vd = size(vd_vertex, 1);
    for i = 1:num_vd
        knn_nodes = vd_vertex(knnsearch(vd_vertex, vd_vertex(i, :), 'K', num_vd), :);
        edges = [];
        for j = 1:num_vd
            if ~is_collision(vd_vertex(i, :), knn_nodes(j, :), map, max_dist, resolution)
                edges = [edges; knn_nodes(j, :)];
            end
            if size(edges, 1) == n_knn
                break;
            end
        end
        % hash-map: from grid index to edges
        road_map(string(vd_vertex(i, 1) + x_range * vd_vertex(i, 2))) = edges;
    end

    [path, goal_reached, cost] = get_shortest_path(road_map, start, goal, map, max_dist, resolution);
    if goal_reached
        path(:, [1 2]) = path(:, [2 1]);
    else
        path = [];
        cost = 0;
    end
end

效果如下:

完整工程代码请联系下方博主名片获取


🔥 更多精彩专栏

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

相关推荐
Aileen_0v01 小时前
【玩转OCR | 腾讯云智能结构化OCR在图像增强与发票识别中的应用实践】
android·java·人工智能·云计算·ocr·腾讯云·玩转腾讯云ocr
速科德电机科技2 小时前
机器人加装电主轴【铣削、钻孔、打磨、去毛刺】更高效
机器人·电主轴
阿正的梦工坊2 小时前
深入理解 PyTorch 的 view() 函数:以多头注意力机制(Multi-Head Attention)为例 (中英双语)
人工智能·pytorch·python
Ainnle2 小时前
GPT-O3:简单介绍
人工智能
OceanBase数据库官方博客3 小时前
向量检索+大语言模型,免费搭建基于专属知识库的 RAG 智能助手
人工智能·oceanbase·分布式数据库·向量数据库·rag
测试者家园3 小时前
ChatGPT助力数据可视化与数据分析效率的提升(一)
软件测试·人工智能·信息可视化·chatgpt·数据挖掘·数据分析·用chatgpt做软件测试
Loving_enjoy4 小时前
ChatGPT详解
人工智能·自然语言处理
人类群星闪耀时4 小时前
深度学习在灾难恢复中的作用:智能运维的新时代
运维·人工智能·深度学习
图王大胜5 小时前
模型 确认偏误(关键决策)
人工智能·职业发展·管理·心理·认知·决策