【Pytorch:nn.Embedding】简介以及使用方法:用于生成固定数量的具有指定维度的嵌入向量embedding vector

文章目录

1、nn.Embedding

  • 首先我们讲解一下关于嵌入向量embedding vector的概念

1)在自然语言处理NLP领域,是将单词、短语或其他文本单位映射到一个固定长度的实数向量空间中 。嵌入向量具有较低的维度,通常在几十到几百维之间,且每个维度都包含一定程度上的语义信息。这意味着在嵌入向量空间中,语义上相似的单词在向量空间中也更加接近。

2)在计算机视觉领域,是将图像或图像中的区域映射到一个固定长度的实数向量空间中。嵌入向量在计算机视觉任务中起到了表示和提取特征的作用。通过将图像映射到嵌入向量空间,可以捕捉到图像的语义信息、视觉特征以及图像之间的相似性。

  • 总之,嵌入向量是具有固定维度的,而不论是在NLP领域还是CV领域,都需要生成多个嵌入向量,因此也有固定数量。
  • 于是,我们就可以简单理解该类为:
python 复制代码
CLASS torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None, max_norm=None,
norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, _freeze=False, device=None, dtype=None)
''
一个简单的查找表,用于存储固定词典和尺寸的embeddings:其实就是存储了固定数量的具有固定维度的嵌入向量
该模块需要使用索引检索嵌入向量:也就是说模块的输入是索引列表,输出是相应存储的嵌入向量。
1) num_embeddings: 嵌入向量的数量
2) embedding_dim: 嵌入向量的维度
注意:
1)它的成员变量weight:具有shape为 (num_embeddings, embedding_dim) 的可学习的参数
2)输入为:任意形状[*]的IntTensor或LongTensor,内部元素为索引值,即0到num_embeddings-1之间的值
   输出为:[*, H]的嵌入向量,H为embedding_dim
''
  • 例如:
python 复制代码
from torch import nn
import torch


# an Embedding module containing 10 tensors of size 3
embedding = nn.Embedding(10, 3)
# a batch of 2 samples of 4 indices each
input = torch.LongTensor([[1, 2, 4, 5], [4, 3, 2, 9]])
print(embedding(input))
print(embedding.weight)
''
输出为:
tensor([[[ 0.4125,  0.1478,  0.3764],
         [ 0.5272, -0.4960,  1.5926],
         [ 0.2231, -0.7653, -0.5333],
         [ 2.8278,  1.5299,  1.4080]],

        [[ 0.2231, -0.7653, -0.5333],
         [-0.3996,  0.3626, -0.3369],
         [ 0.5272, -0.4960,  1.5926],
         [ 0.6222,  1.3385,  0.6861]]], grad_fn=<EmbeddingBackward>)
Parameter containing:
tensor([[-0.1316, -0.2370, -0.8308],
        [ 0.4125,  0.1478,  0.3764],
        [ 0.5272, -0.4960,  1.5926],
        [-0.3996,  0.3626, -0.3369],
        [ 0.2231, -0.7653, -0.5333],
        [ 2.8278,  1.5299,  1.4080],
        [-0.4182,  0.4665,  1.5345],
        [-1.2107,  0.3569,  0.9719],
        [-0.6439, -0.4095,  0.6130],
        [ 0.6222,  1.3385,  0.6861]], requires_grad=True)
''

2、使用场景

  • transformer decoder输入的嵌入向量Output Embedding
  • DETR中的decoder的object queries
相关推荐
一点.点3 小时前
自然语言处理的简单介绍
人工智能·深度学习·自然语言处理
水花花花花花4 小时前
Transformer 架构在目标检测中的应用:YOLO 系列模型解析
目标检测·架构·transformer
深度学习入门5 小时前
学习深度学习是否要先学习机器学习?
人工智能·深度学习·神经网络·学习·机器学习·ai·深度学习入门
willhu20086 小时前
Tensorflow2保存和加载模型
深度学习·机器学习·tensorflow
Sylvan Ding6 小时前
远程主机状态监控-GPU服务器状态监控-深度学习服务器状态监控
运维·服务器·深度学习·监控·远程·gpu状态
赵青临的辉7 小时前
简单神经网络(ANN)实现:从零开始构建第一个模型
人工智能·深度学习·神经网络
2303_Alpha7 小时前
深度学习入门:深度学习(完结)
人工智能·笔记·python·深度学习·神经网络·机器学习
白白白飘8 小时前
pytorch 15.1 学习率调度基本概念与手动实现方法
人工智能·pytorch·学习
深度学习入门8 小时前
机器学习,深度学习,神经网络,深度神经网络之间有何区别?
人工智能·python·深度学习·神经网络·机器学习·机器学习入门·深度学习算法
埃菲尔铁塔_CV算法8 小时前
深度学习驱动下的目标检测技术:原理、算法与应用创新
深度学习·算法·目标检测