LeetCode //C - 128. Longest Consecutive Sequence

128. Longest Consecutive Sequence

Given an unsorted array of integers nums , return the length of the longest consecutive elements sequence.

You must write an algorithm that runs in O(n) time.

Example 1:

Input: nums = [100,4,200,1,3,2]
Output: 4
Explanation: The longest consecutive elements sequence is [1, 2, 3, 4]. Therefore its length is 4.

Example 2:

Input: nums = [0,3,7,2,5,8,4,6,0,1]
Output: 9

Constraints:

  • 0 < = n u m s . l e n g t h < = 1 0 5 0 <= nums.length <= 10^5 0<=nums.length<=105
  • − 1 0 9 < = n u m s [ i ] < = 1 0 9 -10^9 <= nums[i] <= 10^9 −109<=nums[i]<=109

From: LeetCode

Link: 128. Longest Consecutive Sequence


Solution:

Ideas:

The idea behind this code is to find the length of the longest consecutive elements sequence in an unsorted array of integers. It does this by leveraging a hash table to achieve O(n) time complexity. Here's a step-by-step explanation of the code:

  1. Hash Table Creation: The code first creates a hash table to efficiently store and search for the numbers in the given array. The hash table is implemented using separate chaining, where each index in the table's array represents a linked list of hash nodes.

  2. Populating the Hash Table: The code iterates through the input array and inserts each number into the hash table. The key for each number is the number itself, and the index is calculated using the absolute value of the number modulo the table's size.

  3. Finding the Longest Consecutive Sequence: The main logic of the code iterates through the input array again, checking for the beginning of a consecutive sequence. It identifies the start of a sequence by looking for a number that doesn't have a predecessor (i.e., there's no (num - 1) in the hash table). Once the start of a sequence is found, it continues to check for consecutive numbers in the sequence, incrementing a counter for each successive number found.

  4. Checking for Consecutive Numbers: To check whether a number is part of a consecutive sequence, the code looks up the number in the hash table using the contains function. This enables efficient O(1) average-time lookups, allowing the code to quickly identify consecutive numbers in the sequence.

  5. Tracking the Longest Sequence: As the code identifies consecutive sequences, it keeps track of the length of the current sequence and updates the length of the longest sequence found so far. Once all numbers have been processed, the length of the longest consecutive sequence is returned.

  6. Memory Cleanup: Finally, the code includes logic to free the dynamically allocated memory for the hash table and its associated linked lists.

Code:
c 复制代码
struct HashNode {
    int key;
    struct HashNode *next;
};

struct HashTable {
    int size;
    struct HashNode **array;
};

struct HashTable* createHashTable(int size) {
    struct HashTable* table = (struct HashTable*)malloc(sizeof(struct HashTable));
    table->size = size;
    table->array = (struct HashNode**)malloc(sizeof(struct HashNode*) * size);
    for (int i = 0; i < size; i++) {
        table->array[i] = NULL;
    }
    return table;
}

void insert(struct HashTable *table, int key) {
    int index = (key < 0 ? -key : key) % table->size;
    struct HashNode *newNode = (struct HashNode*)malloc(sizeof(struct HashNode));
    newNode->key = key;
    newNode->next = table->array[index];
    table->array[index] = newNode;
}

bool contains(struct HashTable *table, int key) {
    int index = (key < 0 ? -key : key) % table->size;
    struct HashNode *current = table->array[index];
    while (current != NULL) {
        if (current->key == key) return true;
        current = current->next;
    }
    return false;
}

int longestConsecutive(int* nums, int numsSize) {
    if (numsSize == 0) return 0;

    struct HashTable *table = createHashTable(numsSize * 2);
    for (int i = 0; i < numsSize; i++) {
        insert(table, nums[i]);
    }

    int longestStreak = 0;
    for (int i = 0; i < numsSize; i++) {
        if (!contains(table, nums[i] - 1)) {
            int currentNum = nums[i];
            int currentStreak = 1;

            while (contains(table, currentNum + 1)) {
                currentNum += 1;
                currentStreak += 1;
            }

            if (currentStreak > longestStreak) {
                longestStreak = currentStreak;
            }
        }
    }

    // Free the allocated memory for the table
    for (int i = 0; i < table->size; i++) {
        struct HashNode* current = table->array[i];
        while (current != NULL) {
            struct HashNode* temp = current;
            current = current->next;
            free(temp);
        }
    }
    free(table->array);
    free(table);

    return longestStreak;
}
相关推荐
我搞slam19 小时前
快乐数--leetcode
算法·leetcode·哈希算法
WWZZ202520 小时前
快速上手大模型:机器学习3(多元线性回归及梯度、向量化、正规方程)
人工智能·算法·机器学习·机器人·slam·具身感知
东方佑21 小时前
从字符串中提取重复子串的Python算法解析
windows·python·算法
西阳未落21 小时前
LeetCode——二分(进阶)
算法·leetcode·职场和发展
通信小呆呆21 小时前
以矩阵视角统一理解:外积、Kronecker 积与 Khatri–Rao 积(含MATLAB可视化)
线性代数·算法·matlab·矩阵·信号处理
CoderCodingNo1 天前
【GESP】C++四级真题 luogu-B4068 [GESP202412 四级] Recamán
开发语言·c++·算法
一个不知名程序员www1 天前
算法学习入门---双指针(C++)
c++·算法
Want5951 天前
C/C++大雪纷飞①
c语言·开发语言·c++
Shilong Wang1 天前
MLE, MAP, Full Bayes
人工智能·算法·机器学习
Theodore_10221 天前
机器学习(6)特征工程与多项式回归
深度学习·算法·机器学习·数据分析·多项式回归