8.15号经典模型复习笔记

文章目录

  • [Deep Residual Learning for Image Recognition(CVPR2016)](#Deep Residual Learning for Image Recognition(CVPR2016))
  • [Densely Connected Convolutional Networks(CVPR2017)](#Densely Connected Convolutional Networks(CVPR2017))
  • [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks(ICML2019)](#EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks(ICML2019))
  • [Res2Net: A New Multi-scale Backbone Architecture](#Res2Net: A New Multi-scale Backbone Architecture)
  • [Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation](#Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation)
  • [Contrastive Learning of Medical Visual Representations from Paired Images and Text](#Contrastive Learning of Medical Visual Representations from Paired Images and Text)
  • [RegNet: Self-Regulated Network for Image Classification](#RegNet: Self-Regulated Network for Image Classification)
  • [Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification(ICCV2021)](#Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification(ICCV2021))
  • [Attention Gated Networks:Learning to Leverage Salient Regions in Medical Images](#Attention Gated Networks:Learning to Leverage Salient Regions in Medical Images)
  • [Tensor Networks for Medical Image Classification(MIDL2020)](#Tensor Networks for Medical Image Classification(MIDL2020))
  • [SKID: Self-Supervised Learning for Knee Injury Diagnosis from MRI Data](#SKID: Self-Supervised Learning for Knee Injury Diagnosis from MRI Data)
  • [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](#MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications)
  • [MobileNetV2: Inverted Residuals and Linear Bottlenecks(CVPR2018)](#MobileNetV2: Inverted Residuals and Linear Bottlenecks(CVPR2018))
  • [VIT:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale(ICLR2021)](#VIT:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale(ICLR2021))
  • [CSPNet: A New Backbone that can Enhance Learning Capability of CNN](#CSPNet: A New Backbone that can Enhance Learning Capability of CNN)
  • [Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization](#Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization)
  • [SIMCLR:A Simple Framework for Contrastive Learning of Visual Representations](#SIMCLR:A Simple Framework for Contrastive Learning of Visual Representations)
  • [Going Deeper with Convolutions](#Going Deeper with Convolutions)
  • [Squeeze-and-Excitation Networks](#Squeeze-and-Excitation Networks)

Deep Residual Learning for Image Recognition(CVPR2016)

方法

resnet经典,使网络变得更深

Densely Connected Convolutional Networks(CVPR2017)

方法

每一层之间互相连接

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks(ICML2019)

方法

相当于是在相对较小的参数下衡量最好的规模(长宽深度以及分辨率)

Res2Net: A New Multi-scale Backbone Architecture

方法

相当于是多规模

Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation

方法



我没理解错误的话相当于是保留上几步的操作的单元,类似于RNN思想

Contrastive Learning of Medical Visual Representations from Paired Images and Text

本文方法



RegNet: Self-Regulated Network for Image Classification

本文方法


可以借鉴的一个方法

Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification(ICCV2021)

方法

相当于是以AUC为目标的优化,原理就不解读了,不是很简单
代码地址

Attention Gated Networks:Learning to Leverage Salient Regions in Medical Images

本文方法

相当于就是得到一个注意力系数,这个系数是关于两张特征图的

Tensor Networks for Medical Image Classification(MIDL2020)

方法


对张量进行操作的

SKID: Self-Supervised Learning for Knee Injury Diagnosis from MRI Data

方法



看代码是最好的

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

方法

就是深度学分离卷积减少参数

MobileNetV2: Inverted Residuals and Linear Bottlenecks(CVPR2018)

方法

和一代相比,参数量减少,增加了残差

VIT:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale(ICLR2021)

方法

来源于自然语言,不是很复杂,了解一下注意力计算就差不多了

CSPNet: A New Backbone that can Enhance Learning Capability of CNN

方法



看看代码就差不多了

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization

本文方法

相当于就是通过梯度得到可解释性的结果

SIMCLR:A Simple Framework for Contrastive Learning of Visual Representations

本文方法

两种不同的数据增强做一个对比损失

Going Deeper with Convolutions

本文方法

Squeeze-and-Excitation Networks

方法

SE模块

相关推荐
MicroTech20258 分钟前
MLGO微算法科技发布多用户协同推理批处理优化系统,重构AI推理服务效率与能耗新标准
人工智能·科技·算法
说私域12 分钟前
互联网企业外化能力与实体零售融合:基于定制开发开源AI智能名片S2B2C商城小程序的实践探索
人工智能·开源·零售
沫儿笙16 分钟前
FANUC发那科焊接机器人薄板焊接节气
人工智能·机器人
IT_陈寒21 分钟前
震惊!我用JavaScript实现了Excel的这5个核心功能,同事直呼内行!
前端·人工智能·后端
YJlio25 分钟前
ProcDump 学习笔记(6.14):在调试器中查看转储(WinDbg / Visual Studio 快速上手)
笔记·学习·visual studio
淞宇智能科技26 分钟前
固态电池五大核心设备全解析
大数据·人工智能·自动化
AndrewHZ38 分钟前
【图像处理基石】多波段图像融合算法入门:从概念到实践
图像处理·人工智能·算法·图像融合·遥感图像·多波段·变换域
Web3_Daisy1 小时前
从透明到可控:链上换仓与资产路径管理的下一阶段
人工智能·安全·web3·区块链·比特币
Zyx20071 小时前
低代码革命:用 Coze AI 一键打造智能应用,人人都能当开发者!
人工智能
ricktian12261 小时前
Warp:智能终端初识
人工智能·agent·warp