8.15号经典模型复习笔记

文章目录

  • [Deep Residual Learning for Image Recognition(CVPR2016)](#Deep Residual Learning for Image Recognition(CVPR2016))
  • [Densely Connected Convolutional Networks(CVPR2017)](#Densely Connected Convolutional Networks(CVPR2017))
  • [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks(ICML2019)](#EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks(ICML2019))
  • [Res2Net: A New Multi-scale Backbone Architecture](#Res2Net: A New Multi-scale Backbone Architecture)
  • [Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation](#Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation)
  • [Contrastive Learning of Medical Visual Representations from Paired Images and Text](#Contrastive Learning of Medical Visual Representations from Paired Images and Text)
  • [RegNet: Self-Regulated Network for Image Classification](#RegNet: Self-Regulated Network for Image Classification)
  • [Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification(ICCV2021)](#Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification(ICCV2021))
  • [Attention Gated Networks:Learning to Leverage Salient Regions in Medical Images](#Attention Gated Networks:Learning to Leverage Salient Regions in Medical Images)
  • [Tensor Networks for Medical Image Classification(MIDL2020)](#Tensor Networks for Medical Image Classification(MIDL2020))
  • [SKID: Self-Supervised Learning for Knee Injury Diagnosis from MRI Data](#SKID: Self-Supervised Learning for Knee Injury Diagnosis from MRI Data)
  • [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](#MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications)
  • [MobileNetV2: Inverted Residuals and Linear Bottlenecks(CVPR2018)](#MobileNetV2: Inverted Residuals and Linear Bottlenecks(CVPR2018))
  • [VIT:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale(ICLR2021)](#VIT:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale(ICLR2021))
  • [CSPNet: A New Backbone that can Enhance Learning Capability of CNN](#CSPNet: A New Backbone that can Enhance Learning Capability of CNN)
  • [Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization](#Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization)
  • [SIMCLR:A Simple Framework for Contrastive Learning of Visual Representations](#SIMCLR:A Simple Framework for Contrastive Learning of Visual Representations)
  • [Going Deeper with Convolutions](#Going Deeper with Convolutions)
  • [Squeeze-and-Excitation Networks](#Squeeze-and-Excitation Networks)

Deep Residual Learning for Image Recognition(CVPR2016)

方法

resnet经典,使网络变得更深

Densely Connected Convolutional Networks(CVPR2017)

方法

每一层之间互相连接

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks(ICML2019)

方法

相当于是在相对较小的参数下衡量最好的规模(长宽深度以及分辨率)

Res2Net: A New Multi-scale Backbone Architecture

方法

相当于是多规模

Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation

方法



我没理解错误的话相当于是保留上几步的操作的单元,类似于RNN思想

Contrastive Learning of Medical Visual Representations from Paired Images and Text

本文方法



RegNet: Self-Regulated Network for Image Classification

本文方法


可以借鉴的一个方法

Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification(ICCV2021)

方法

相当于是以AUC为目标的优化,原理就不解读了,不是很简单
代码地址

Attention Gated Networks:Learning to Leverage Salient Regions in Medical Images

本文方法

相当于就是得到一个注意力系数,这个系数是关于两张特征图的

Tensor Networks for Medical Image Classification(MIDL2020)

方法


对张量进行操作的

SKID: Self-Supervised Learning for Knee Injury Diagnosis from MRI Data

方法



看代码是最好的

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

方法

就是深度学分离卷积减少参数

MobileNetV2: Inverted Residuals and Linear Bottlenecks(CVPR2018)

方法

和一代相比,参数量减少,增加了残差

VIT:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale(ICLR2021)

方法

来源于自然语言,不是很复杂,了解一下注意力计算就差不多了

CSPNet: A New Backbone that can Enhance Learning Capability of CNN

方法



看看代码就差不多了

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization

本文方法

相当于就是通过梯度得到可解释性的结果

SIMCLR:A Simple Framework for Contrastive Learning of Visual Representations

本文方法

两种不同的数据增强做一个对比损失

Going Deeper with Convolutions

本文方法

Squeeze-and-Excitation Networks

方法

SE模块

相关推荐
算家计算9 分钟前
快手新模型登顶开源编程模型榜首!超越Qwen3-Coder等模型
人工智能·开源·资讯
ManageEngineITSM15 分钟前
IT 服务自动化的时代:让效率与体验共进
运维·数据库·人工智能·自动化·itsm·工单系统
总有刁民想爱朕ha30 分钟前
AI大模型学习(17)python-flask AI大模型和图片处理工具的从一张图到多平台适配的简单方法
人工智能·python·学习·电商图片处理
302AI1 小时前
体验升级而非颠覆,API成本直降75%:DeepSeek-V3.2-Exp评测
人工智能·llm·deepseek
新智元1 小时前
老黄押宝「美版 DeepSeek」!谷歌天才叛将创业,一夜吸金 20 亿美元
人工智能·openai
新智元1 小时前
刚刚,全球首个 GB300 巨兽救场!一年烧光 70 亿,OpenAI 内斗 GPU 惨烈
人工智能·openai
Cathy Bryant1 小时前
球极平面投影
经验分享·笔记·数学建模
小虎鲸001 小时前
PyTorch的安装与使用
人工智能·pytorch·python·深度学习
酷柚易汛智推官1 小时前
AI + 区块链开发实战:3 大技术方向 + 5 个落地案例,解锁去中心化网络效能密码
人工智能·去中心化·区块链
Larry_Yanan2 小时前
QML学习笔记(三十一)QML的Flow定位器
java·前端·javascript·笔记·qt·学习·ui