8.15号经典模型复习笔记

文章目录

  • [Deep Residual Learning for Image Recognition(CVPR2016)](#Deep Residual Learning for Image Recognition(CVPR2016))
  • [Densely Connected Convolutional Networks(CVPR2017)](#Densely Connected Convolutional Networks(CVPR2017))
  • [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks(ICML2019)](#EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks(ICML2019))
  • [Res2Net: A New Multi-scale Backbone Architecture](#Res2Net: A New Multi-scale Backbone Architecture)
  • [Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation](#Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation)
  • [Contrastive Learning of Medical Visual Representations from Paired Images and Text](#Contrastive Learning of Medical Visual Representations from Paired Images and Text)
  • [RegNet: Self-Regulated Network for Image Classification](#RegNet: Self-Regulated Network for Image Classification)
  • [Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification(ICCV2021)](#Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification(ICCV2021))
  • [Attention Gated Networks:Learning to Leverage Salient Regions in Medical Images](#Attention Gated Networks:Learning to Leverage Salient Regions in Medical Images)
  • [Tensor Networks for Medical Image Classification(MIDL2020)](#Tensor Networks for Medical Image Classification(MIDL2020))
  • [SKID: Self-Supervised Learning for Knee Injury Diagnosis from MRI Data](#SKID: Self-Supervised Learning for Knee Injury Diagnosis from MRI Data)
  • [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](#MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications)
  • [MobileNetV2: Inverted Residuals and Linear Bottlenecks(CVPR2018)](#MobileNetV2: Inverted Residuals and Linear Bottlenecks(CVPR2018))
  • [VIT:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale(ICLR2021)](#VIT:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale(ICLR2021))
  • [CSPNet: A New Backbone that can Enhance Learning Capability of CNN](#CSPNet: A New Backbone that can Enhance Learning Capability of CNN)
  • [Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization](#Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization)
  • [SIMCLR:A Simple Framework for Contrastive Learning of Visual Representations](#SIMCLR:A Simple Framework for Contrastive Learning of Visual Representations)
  • [Going Deeper with Convolutions](#Going Deeper with Convolutions)
  • [Squeeze-and-Excitation Networks](#Squeeze-and-Excitation Networks)

Deep Residual Learning for Image Recognition(CVPR2016)

方法

resnet经典,使网络变得更深

Densely Connected Convolutional Networks(CVPR2017)

方法

每一层之间互相连接

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks(ICML2019)

方法

相当于是在相对较小的参数下衡量最好的规模(长宽深度以及分辨率)

Res2Net: A New Multi-scale Backbone Architecture

方法

相当于是多规模

Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation

方法



我没理解错误的话相当于是保留上几步的操作的单元,类似于RNN思想

Contrastive Learning of Medical Visual Representations from Paired Images and Text

本文方法



RegNet: Self-Regulated Network for Image Classification

本文方法


可以借鉴的一个方法

Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification(ICCV2021)

方法

相当于是以AUC为目标的优化,原理就不解读了,不是很简单
代码地址

Attention Gated Networks:Learning to Leverage Salient Regions in Medical Images

本文方法

相当于就是得到一个注意力系数,这个系数是关于两张特征图的

Tensor Networks for Medical Image Classification(MIDL2020)

方法


对张量进行操作的

SKID: Self-Supervised Learning for Knee Injury Diagnosis from MRI Data

方法



看代码是最好的

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

方法

就是深度学分离卷积减少参数

MobileNetV2: Inverted Residuals and Linear Bottlenecks(CVPR2018)

方法

和一代相比,参数量减少,增加了残差

VIT:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale(ICLR2021)

方法

来源于自然语言,不是很复杂,了解一下注意力计算就差不多了

CSPNet: A New Backbone that can Enhance Learning Capability of CNN

方法



看看代码就差不多了

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization

本文方法

相当于就是通过梯度得到可解释性的结果

SIMCLR:A Simple Framework for Contrastive Learning of Visual Representations

本文方法

两种不同的数据增强做一个对比损失

Going Deeper with Convolutions

本文方法

Squeeze-and-Excitation Networks

方法

SE模块

相关推荐
@心都1 分钟前
机器学习数学基础:29.t检验
人工智能·机器学习
9命怪猫3 分钟前
DeepSeek底层揭秘——微调
人工智能·深度学习·神经网络·ai·大模型
E___V___E1 小时前
MySQL数据库入门到大蛇尚硅谷宋红康老师笔记 高级篇 part 2
数据库·笔记·mysql
kcarly1 小时前
KTransformers如何通过内核级优化、多GPU并行策略和稀疏注意力等技术显著加速大语言模型的推理速度?
人工智能·语言模型·自然语言处理
Jackilina_Stone1 小时前
【论文阅读笔记】浅谈深度学习中的知识蒸馏 | 关系知识蒸馏 | CVPR 2019 | RKD
论文阅读·深度学习·蒸馏·rkd
倒霉蛋小马3 小时前
【YOLOv8】损失函数
深度学习·yolo·机器学习
MinIO官方账号3 小时前
使用 AIStor 和 OpenSearch 增强搜索功能
人工智能
江江江江江江江江江3 小时前
深度神经网络终极指南:从数学本质到工业级实现(附Keras版本代码)
人工智能·keras·dnn
Fansv5873 小时前
深度学习-2.机械学习基础
人工智能·经验分享·python·深度学习·算法·机器学习
小怪兽会微笑4 小时前
PyTorch Tensor 形状变化操作详解
人工智能·pytorch·python