8.15号经典模型复习笔记

文章目录

  • [Deep Residual Learning for Image Recognition(CVPR2016)](#Deep Residual Learning for Image Recognition(CVPR2016))
  • [Densely Connected Convolutional Networks(CVPR2017)](#Densely Connected Convolutional Networks(CVPR2017))
  • [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks(ICML2019)](#EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks(ICML2019))
  • [Res2Net: A New Multi-scale Backbone Architecture](#Res2Net: A New Multi-scale Backbone Architecture)
  • [Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation](#Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation)
  • [Contrastive Learning of Medical Visual Representations from Paired Images and Text](#Contrastive Learning of Medical Visual Representations from Paired Images and Text)
  • [RegNet: Self-Regulated Network for Image Classification](#RegNet: Self-Regulated Network for Image Classification)
  • [Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification(ICCV2021)](#Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification(ICCV2021))
  • [Attention Gated Networks:Learning to Leverage Salient Regions in Medical Images](#Attention Gated Networks:Learning to Leverage Salient Regions in Medical Images)
  • [Tensor Networks for Medical Image Classification(MIDL2020)](#Tensor Networks for Medical Image Classification(MIDL2020))
  • [SKID: Self-Supervised Learning for Knee Injury Diagnosis from MRI Data](#SKID: Self-Supervised Learning for Knee Injury Diagnosis from MRI Data)
  • [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](#MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications)
  • [MobileNetV2: Inverted Residuals and Linear Bottlenecks(CVPR2018)](#MobileNetV2: Inverted Residuals and Linear Bottlenecks(CVPR2018))
  • [VIT:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale(ICLR2021)](#VIT:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale(ICLR2021))
  • [CSPNet: A New Backbone that can Enhance Learning Capability of CNN](#CSPNet: A New Backbone that can Enhance Learning Capability of CNN)
  • [Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization](#Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization)
  • [SIMCLR:A Simple Framework for Contrastive Learning of Visual Representations](#SIMCLR:A Simple Framework for Contrastive Learning of Visual Representations)
  • [Going Deeper with Convolutions](#Going Deeper with Convolutions)
  • [Squeeze-and-Excitation Networks](#Squeeze-and-Excitation Networks)

Deep Residual Learning for Image Recognition(CVPR2016)

方法

resnet经典,使网络变得更深

Densely Connected Convolutional Networks(CVPR2017)

方法

每一层之间互相连接

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks(ICML2019)

方法

相当于是在相对较小的参数下衡量最好的规模(长宽深度以及分辨率)

Res2Net: A New Multi-scale Backbone Architecture

方法

相当于是多规模

Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation

方法



我没理解错误的话相当于是保留上几步的操作的单元,类似于RNN思想

Contrastive Learning of Medical Visual Representations from Paired Images and Text

本文方法



RegNet: Self-Regulated Network for Image Classification

本文方法


可以借鉴的一个方法

Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification(ICCV2021)

方法

相当于是以AUC为目标的优化,原理就不解读了,不是很简单
代码地址

Attention Gated Networks:Learning to Leverage Salient Regions in Medical Images

本文方法

相当于就是得到一个注意力系数,这个系数是关于两张特征图的

Tensor Networks for Medical Image Classification(MIDL2020)

方法


对张量进行操作的

SKID: Self-Supervised Learning for Knee Injury Diagnosis from MRI Data

方法



看代码是最好的

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

方法

就是深度学分离卷积减少参数

MobileNetV2: Inverted Residuals and Linear Bottlenecks(CVPR2018)

方法

和一代相比,参数量减少,增加了残差

VIT:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale(ICLR2021)

方法

来源于自然语言,不是很复杂,了解一下注意力计算就差不多了

CSPNet: A New Backbone that can Enhance Learning Capability of CNN

方法



看看代码就差不多了

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization

本文方法

相当于就是通过梯度得到可解释性的结果

SIMCLR:A Simple Framework for Contrastive Learning of Visual Representations

本文方法

两种不同的数据增强做一个对比损失

Going Deeper with Convolutions

本文方法

Squeeze-and-Excitation Networks

方法

SE模块

相关推荐
安全二次方security²6 分钟前
CUDA C++编程指南(7.5&6)——C++语言扩展之内存栅栏函数和同步函数
c++·人工智能·nvidia·cuda·内存栅栏函数·同步函数·syncthreads
汗流浃背了吧,老弟!9 分钟前
构建RAG系统时,如何选择合适的嵌入模型(Embedding Model)?
人工智能·python·embedding
老蒋每日coding21 分钟前
从存证到智能:当碳链架构注入AI灵魂——区块链+AI融合新范式
人工智能·区块链
DN202036 分钟前
靠谱的AI销售机器人哪家好
java·人工智能·机器人
菜鸟‍43 分钟前
【论文学习】重新审视面向持续图像分割的基于查询的 Transformer || 用于二分类图像分割的多视图聚合网络
人工智能·学习·计算机视觉
乌恩大侠44 分钟前
AI-RAN Sionna 开发者套件
人工智能·usrp·mimo·airan·sionna
foundbug99944 分钟前
正则化反演的MATLAB实现(适用于地球物理数值反演)
人工智能·matlab
孞㐑¥1 小时前
算法—前缀和
c++·经验分享·笔记·算法
JeffDingAI1 小时前
【Datawhale学习笔记】RLHF微调技术及实践
人工智能·笔记·学习
CourserLi1 小时前
【AI 解题】Yusa的密码学课堂 2026.1.25
人工智能·密码学