分类预测 | MATLAB实现GWO-BiLSTM-Attention多输入分类预测

分类预测 | MATLAB实现GWO-BiLSTM-Attention多输入分类预测

目录

预测效果



基本介绍

1.GWO-BiLSTM-Attention 数据分类预测程序

2.代码说明:基于灰狼优化算法(GWO)、双向长短期记忆网络(BiLSTM)和注意力机制的数据分类预测程序。

程序平台:要求于Matlab 2023版及以上版本。

特点:

1、多行变量特征输入。

2、GWO优化了学习率、神经元个数等参数,方便增加维度和优化其他参数。(若首轮精度最高,则适应度曲线为水平直线)

3、适用于轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网等领域的识别、诊断和分类。

4.可直接替换数据,使用EXCEL表格导入,无需大幅修改程序。代码内部有详细注释,便于理解程序运行。

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复 MATLAB实现GWO-BiLSTM-Attention多输入分类预测获取。
clike 复制代码
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%%  个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :);     % 全局最佳
gbest = pop;                   % 个体最佳
fitnessgbest = fitness;        % 个体最佳适应度值
BestFit = fitnesszbest;        % 全局最佳适应度值

%%  迭代寻优
for i = 1 : maxgen
    for j = 1 : sizepop
        
        % 速度更新
        V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));
        V(j, (V(j, :) > Vmax)) = Vmax;
        V(j, (V(j, :) < Vmin)) = Vmin;
        
        % 种群更新
        pop(j, :) = pop(j, :) + 0.2 * V(j, :);
        pop(j, (pop(j, :) > popmax)) = popmax;
        pop(j, (pop(j, :) < popmin)) = popmin;
        
        % 自适应变异
        pos = unidrnd(numsum);
        if rand > 0.95
            pop(j, pos) = rands(1, 1);
        end
        
        % 适应度值
        fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);

    end
    
    for j = 1 : sizepop

        % 个体最优更新
        if fitness(j) < fitnessgbest(j)
            gbest(j, :) = pop(j, :);
            fitnessgbest(j) = fitness(j);
        end

        % 群体最优更新 
        if fitness(j) < fitnesszbest
            zbest = pop(j, :);
            fitnesszbest = fitness(j);
        end

    end

    BestFit = [BestFit, fitnesszbest];    
end
------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130462492

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129679476?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/129659229?spm=1001.2014.3001.5501 \[3\] https://blog.csdn.net/kjm13182345320/article/details/129653829?spm=1001.2014.3001.5501

相关推荐
机器学习之心11 天前
分类预测 | Matlab实现BO-LSTM-Attention多特征分类预测
matlab·分类·lstm·attention·bo-lstm
zbdx不知名菜鸡13 天前
self Attention为何除以根号dk?(全新角度)
transformer·attention·概率论
爱听歌的周童鞋18 天前
Flash Attention原理讲解
attention·self-attention·flash attention
AINLPer21 天前
Attention又升级!Moonshot | 提出MoE注意力架构:MoBA,提升LLM长文本推理效率
attention
xidianjiapei0011 个月前
5分钟速览深度学习经典论文 —— attention is all you need
人工智能·深度学习·transformer·attention·论文解读
爱听歌的周童鞋1 个月前
DeepSeek MLA(Multi-Head Latent Attention)算法浅析
attention·gqa·deepseek·mla
简简单单做算法1 个月前
基于GWO灰狼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
人工智能·lstm·bilstm·gwo-bilstm·双向长短期记忆网络·序列预测
开出南方的花2 个月前
DeepSeek模型架构及优化内容
人工智能·pytorch·深度学习·机器学习·架构·nlp·attention
SpikeKing2 个月前
LeetCode - Google 大模型校招10题 第1天 Attention 汇总 (3题)
leetcode·llm·attention·multihead·groupquery·kvcache
机器学习之心3 个月前
WOA-CNN-GRU-Attention、CNN-GRU-Attention、WOA-CNN-GRU、CNN-GRU四模型对比多变量时序预测
attention·cnn-gru·woa-cnn-gru·四模型对比多变量时序预测