数据结构:堆的实现

1.堆的概念

如果有一个关键码的集合 K = { k1 ,k2 ,k3 ,...,kn },把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并且 k(i) < k(i*2+1) 和 k(i) < k(i*2+2), i = 0 , 1 , 2...,则称为小堆 ( 或大堆 ) 。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

1.1堆的性质

堆中某个节点的值总是不大于或不小于其父节点的值;
堆总是一棵完全二叉树。

1.2堆的存储结构

2.堆的实现

堆的构建
堆的销毁
堆的插入
堆的删除
取堆顶的数据
堆的数据个数
堆的判空

2.1堆的构造与销毁

复制代码
void HeapInit(HP* php)
{
	assert(php);
	php->a = NULL;
	php->size = 0;
	php->capacity = 0;
}

void HeapDestroy(HP* php)
{
	assert(php);
	free(php->a);
	php->a = NULL;
	php->size = 0;
	php->capacity = 0;
}

2.2堆的向上与向下调整

复制代码
void swap(DataType*str1, DataType*str2)
{
	DataType temp = *str1;
	*str1 = *str2;
	*str2 = temp;
}
//向上调整(前提是上面是一个堆)
void AdjustUp(DataType* a, int child)
{
	//利用孩子找父亲,并且比较
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		// "<" 和 ">"取决与建立大小堆
		if (a[child] < a[parent])
		{
			swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{break;}
	}
}
//向下调整(前提是下面左右子树是一个堆)
void AdjustDown(int* a, int n, int parent)//n是数量
{
	//利用父亲找儿子并比较大小
	int child = parent * 2 + 1;
	while (child < n)
	{
		//child + 1 < n可能没有右孩子,防止越界风险
		if (child + 1 < n && a[child + 1] < a[child])
		{
			child++;
		}
		// "<" 和 ">"取决与建立大小堆
		if (a[child] > a[parent])
		{
			swap(&a[child], &a[parent]);
			parent = child;
			int child = parent * 2 + 1;
		}
		else
			break;
	}
}

2.3 堆的插入与堆的删除

复制代码
//先插入一个数到数组的尾上,再进行向上调整算法,直到满足堆
void HeapPush(HP* php, DataType x)
{
	assert(php);
	//判断是否要扩容
	if (php->size == php->capacity)
	{
		int newCapacity = php->capacity == 0 ? 4 : php->capacity * 2;
		DataType* temp = (DataType*)realloc(php->a, newCapacity * sizeof(DataType));
		if (temp == NULL)
		{
			perror("realloc fail");
			return;
		}

		php->a = temp;
		php->capacity = newCapacity;
	}

	php->a[php->size] = x;
	php->size++;

	AdjustUp(php->a, php->size - 1);
}
//删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组
//最后一个数据,再进行向下调整算法。
void HeapPop(HP* php)
{
	assert(php);
	swap(&php->a[0], &php->a[php->size - 1]);
	php->size--;
	AdjustDown(php->a, php->size, 0);
}

2.4堆的数据个数与堆的判空和取得堆的堆顶元素

复制代码
DataType HeapTop(HP* php)
{
	assert(php);
	assert(!HeapEmpty(php));

	return php->a[0];
}
bool HeapEmpty(HP* php)
{
	assert(php);

	return php->size == 0;
}

int HeapSize(HP* php)
{
	assert(php);

	return php->size;
}
相关推荐
编码浪子1 小时前
趣味学RUST基础篇(智能指针_结束)
开发语言·算法·rust
爱编程的化学家2 小时前
代码随想录算法训练营第六天 - 哈希表2 || 454.四数相加II / 383.赎金信 / 15.三数之和 / 18.四数之和
数据结构·c++·算法·leetcode·双指针·哈希
闲人编程5 小时前
图像去雾算法:从物理模型到深度学习实现
图像处理·人工智能·python·深度学习·算法·计算机视觉·去雾
咔咔学姐kk5 小时前
大模型微调技术宝典:Transformer架构,从小白到专家
人工智能·深度学习·学习·算法·transformer
haogexiaole6 小时前
Dijkstra 算法
算法
papership7 小时前
【入门级-算法-6、排序算法: 插入排序】
数据结构·算法·排序算法
HAH-HAH7 小时前
【蓝桥杯 2024 国 Java A】粉刷匠小蓝
c++·学习·数学·算法·职场和发展·蓝桥杯·组合数学
得意霄尽欢7 小时前
Redis之底层数据结构
数据结构·数据库·redis
I'm a winner8 小时前
第五章:Python 数据结构:列表、元组与字典(二)
数据结构·python
我是是是是是西红柿8 小时前
游戏中的展销系统使用的数据结构
数据结构·游戏