cuda+anaconda+pytorch按照教程

首先安装显卡对应的CUDA版本,关键点在于区别显卡支持的CUDA最高版本和运行版本

1、查看当前显卡支持的最高版本,有两种方式:

1)NVIDIA控制面板--->帮助--->系统信息--->组件--->NVCUDA.dll对应版本

请注意,12.2为本机CUDA支持的最高版本

python 复制代码
nvidia-smi

nvidia-smi显示的同上,也表示cuda支持的最高版本

安装对应CUDA版本并查看

按照CUDA时需要对应torch的版本,官方推荐的cuda版本为10.2和11.3,这两种 cuda 支持大多数的 pytorch 版本。

1、以下是Pytorch和CUDA对应的版本

2、以下是Pytorch和Python对应的版本

3、安装CUDA 11.3版本

1)CUDA 安装包官网

下载对应安装包并默认按照即可,安装效果如下:
上述11.3即对应的cuda版本

python 复制代码
ncvv -V  #查看并检查电脑对应cuda版本

接着创建anaconda环境并按照gpu版本的pytorch

1、首先创建环境

python 复制代码
conda create -n pytorch python=3.7

2、接着在安装torch时,先配置好anaconda的镜像源。由于刚开始c盘并没有配置镜像源的文件,《C:\Users\Admin.condarc》,安装anaconda时关于windows系统没有.condarc文件的处理

python 复制代码
conda config --set show_channel_urls yes

同时配置清华镜像源

python 复制代码
show_channel_urls: true
ssl_verify: true
remote_read_timeout_secs: 100000.0
channels:
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/win-64
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - defaults
  - conda-forge
report_errors: true

3、安装gpu版本的torch有以下教程,最简单的是直接使用下面这条命令

python 复制代码
conda install pytorch torchvision torchaudio cudatoolkit=11.3

但是,安装的总是cpu版本的torch,主要是因为不能同时匹配cuda对用的gpu版torch,conda按照总是体术pytorch对应的cpu版本,如下图:

conda安装GPU版pytorch,结果却是cpu版本[找到问题根源,从容解决。

上述解决方法从根本上解决版本不对应问题,主要通过先查看清华镜像源的方式。

1)先看清华镜像源cuda对应的安装包版本,清华镜像源

以cuda 11.3为例,其对应的torch==1.10.0,cudnn=8.0,进一步需查看torch对应的torchvision版本,链接详情如下:

至此,准备工作结束!

4、使用以下命令先安装cudatoolkit,接着cudnn,最后pytorch、torchvision。

1)安装 cudatoolkit,其实环境里面的

python 复制代码
conda install cudatoolkit=11.3 # 安装 cuda

2)安装 cudnn

python 复制代码
conda install cudnn=8.0 # 安装cudnn

3)安装 pytorch

python 复制代码
conda install pytorch==1.10.0 torchvision==0.11.1 cudatoolkit=11.3
  1. 检查
  2. 测试
python 复制代码
import torch
print(torch.__version__)  #注意是双下划线
print(torch.version.cuda)
print(torch.cuda.is_available())
print(torch.cuda.get_device_name())
相关推荐
irrationality17 分钟前
昇思大模型平台打卡体验活动:项目1基于MindSpore实现BERT对话情绪识别
人工智能·深度学习·bert
myheartgo-on18 分钟前
PySpark——Python与大数据
大数据·python·信息可视化
newxtc38 分钟前
【魔珐有言-注册/登录安全分析报告-无验证方式导致安全隐患】
人工智能·安全·网易易盾·ai写作·极验
weixin_4786897643 分钟前
【回溯法】——组合总数
数据结构·python·算法
天天要nx1 小时前
D68【python 接口自动化学习】- python基础之数据库
数据库·python
山山而川 潺潺如镜1 小时前
杰控通过 OPCproxy 获取数据发送到服务器
python
EasyCVR1 小时前
GA/T1400视图库平台EasyCVR视频融合平台HLS视频协议是什么?
服务器·网络·人工智能·音视频
V搜xhliang02461 小时前
基于深度学习的地物类型的提取
开发语言·人工智能·python·深度学习·神经网络·学习·conda
青椒大仙KI111 小时前
24/11/14 算法笔记<强化学习> 马尔可夫
人工智能·笔记·机器学习
GOTXX1 小时前
NAT、代理服务与内网穿透技术全解析
linux·网络·人工智能·计算机网络·智能路由器