第三章,矩阵,08-矩阵的秩及相关性质

第三章,矩阵,08-矩阵的秩及相关性质

玩转线性代数(20)矩阵的秩的笔记,相关证明以及例子见原文

秩的定义1

设矩阵 A m ∗ n A_{m*n} Am∗n,称其标准形中单位矩阵子块的阶数为矩阵A的秩,记为 R ( A ) R(A) R(A)

最高阶非零子式

设在矩阵A中有一个r阶子式 D ≠ 0 D \neq 0 D=0,且所有r+1阶子式(如果存在的话)全等于0,那么D称为矩阵A的最高阶非零子式。

定理

设 A r ∼ B A^r \sim B Ar∼B,则A与B中最高阶非零子式的阶数相等

秩的定义2

由定理得定义2:一个矩阵的秩为它的最高阶非零子式的阶数

秩的性质

首先要了解判断矩阵的秩的依据有三点:

1、矩阵的秩为最高阶非零子式的阶数;

2、矩阵的秩为行阶梯的非零行数或列阶梯的非零列数或标准形中单位矩阵的阶数;

3、初等变换不改变矩阵的秩.

性质1

零矩阵的秩是零

性质2

若 A ≠ 0 A\neq0 A=0则 R ( A ) ≥ 1 R(A)\geq1 R(A)≥1

性质3

若A为m*n矩阵,则 0 ≥ R ( A ) ≥ m i n { m , n } 0\geq R(A)\geq min\{m,n\} 0≥R(A)≥min{m,n}

性质4

若 A = ( B ∗ ∗ ∗ ) A= \begin{pmatrix} B & * \\* & * \end{pmatrix} A=(B∗∗∗)是一个分块矩阵,B是A的子块,则 R ( A ) ≥ R ( B ) R(A)\geq R(B) R(A)≥R(B)

性质5

若 A m ∗ n A_{m*n} Am∗n中有一个s阶非零子式,则 R ( A ) ≥ s R(A)\geq s R(A)≥s;若 A m ∗ n A_{m*n} Am∗n中所有t阶子式都为0,则 R ( A ) < t R(A)\lt t R(A)<t

性质6

对任意矩阵A,有 R ( A T ) = R ( A ) R(A^T)=R(A) R(AT)=R(A)

性质7

( A 0 0 B ) \begin{pmatrix} A & 0 \\0 & B \end{pmatrix} (A00B)是一个分块矩阵,A、B是其子块,则 R ( A 0 0 B ) = R ( A ) + R ( B ) R\begin{pmatrix} A & 0 \\0 & B \end{pmatrix}= R(A) + R(B) R(A00B)=R(A)+R(B)

性质8

( A 0 B 0 ) \begin{pmatrix} A & 0 \\ B & 0 \end{pmatrix} (AB00)是一个分块矩阵,A、B是其子块,则 R ( A 0 B 0 ) ≤ R ( A ) + R ( B ) R\begin{pmatrix} A & 0 \\ B & 0 \end{pmatrix}\leq R(A) + R(B) R(AB00)≤R(A)+R(B)

性质9

对任意m*n矩阵A,B,无论对其进行加、减、横排、竖排,其秩均不超过 R ( A ) + R ( B ) R(A) + R(B) R(A)+R(B)

性质10

分块矩阵 ( A , B ) (A,B) (A,B)、 ( A B ) \begin{pmatrix} A \\ B \end{pmatrix} (AB)、 ( A 0 B 0 ) \begin{pmatrix} A & 0 \\ B & 0 \end{pmatrix} (AB00)的秩都满足 ≥ m a x ( R ( A ) , R ( B ) ) \geq max(R(A), R(B)) ≥max(R(A),R(B))

性质11

若 A ∼ B A \sim B A∼B则 R ( A ) = R ( B ) R(A)=R(B) R(A)=R(B)

性质12

若 A m n B n l = C A_{mn}B_{nl}=C AmnBnl=C且 R ( A ) = n R(A)=n R(A)=n,则 R ( B ) = R ( C ) R(B)=R(C) R(B)=R(C),可得若B行满秩,则 R ( A ) = R ( C ) R(A)=R(C) R(A)=R(C)

证:

只证明列满秩的情况,因 R ( A ) = n R(A)=n R(A)=n,知A行最简形矩阵为 ( E n O ) m ∗ n \begin{pmatrix} E_n \\ O \end{pmatrix}_{m*n} (EnO)m∗n,并且有m阶可逆矩阵P,使 P A = ( E n O ) PA=\begin{pmatrix} E_n \\ O \end{pmatrix} PA=(EnO),于是
P C = P A B = ( E n O ) B = ( B O ) PC=PAB=\begin{pmatrix} E_n \\ O \end{pmatrix}B=\begin{pmatrix} B \\ O \end{pmatrix} PC=PAB=(EnO)B=(BO)

知 R ( C ) = R ( P C ) R(C)=R(PC) R(C)=R(PC),而 R ( B O ) = R ( B ) R\begin{pmatrix} B \\ O \end{pmatrix}=R(B) R(BO)=R(B),故
R ( C ) = R ( B ) R(C)=R(B) R(C)=R(B)

本例中的A为列满秩矩阵,当A为方阵时,列满秩矩阵就成为满秩矩阵,也就是可逆矩阵。因此,本例的结论当A为方阵时B和C就是等价关系,当然秩相等。

性质12的推论

若 A m n B n l = O A_{mn}B_{nl}=O AmnBnl=O,且 R ( A ) = n R(A)=n R(A)=n,则B=O(矩阵乘法的消去律)

相关推荐
一碗姜汤16 小时前
【统计基础】卡尔曼滤波,矩阵对迹求导,Joseph Form,条件数
线性代数·矩阵
sunfove16 小时前
麦克斯韦方程组 (Maxwell‘s Equations) 的完整推导
线性代数·算法·矩阵
yyy(十一月限定版)17 小时前
matlab矩阵的操作
算法·matlab·矩阵
ComputerInBook18 小时前
代数学基本概念理解——幺正矩阵(Unitary matrix)(酉矩阵?)
线性代数·矩阵·正交矩阵·幺正矩阵·酉矩阵
AI科技星20 小时前
光速飞行器动力学方程的第一性原理推导、验证与范式革命
数据结构·人工智能·线性代数·算法·机器学习·概率论
一碗姜汤21 小时前
【统计基础】从线性代数的直观角度理解SVD奇异值分解
线性代数
好奇龙猫21 小时前
【大学院-筆記試験練習:线性代数和数据结构(5)】
数据结构·线性代数
jinmo_C++1 天前
Leetcode矩阵
算法·leetcode·矩阵
愚公搬代码2 天前
【愚公系列】《AI+直播营销》015-直播的选品策略(设计直播产品矩阵)
人工智能·线性代数·矩阵
paixingbang2 天前
2026短视频矩阵服务商评测报告 星链引擎、河南云罗、数阶智能
大数据·线性代数·矩阵