分类预测 | MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测

分类预测 | MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测

目录

分类效果





基本描述

1.MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测,运行环境Matlab2023b及以上;

2.基于鲸鱼优化算法(WOA)、卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的数据分类预测程序;

3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;过WOA优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以测试集精度最高为目标函数

程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;

4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行,可在下载区获取数据和程序内容。

5.适用领域:适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。

使用便捷:直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

程序设计

  • 完整程序和数据获取方式:私信博主回复** MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测**。
clike 复制代码
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,10 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)

fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);

[Best_score,Best_pos,curve]=WOA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));   
best_hd  = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数
 
%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [
    sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]
    sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [
    convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1],16个特征图
    reluLayer("Name", "relu_1")                                          % Relu 激活层
    convolution2dLayer([3, 1], 32, "Name", "conv_2", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1],32个特征图
    reluLayer("Name", "relu_2")];                                        % Relu 激活层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中

tempLayers = [
    sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层
    flattenLayer("Name", "flatten")                                  % 网络铺平层
    bilstmLayer(best_hd, "Name", "bilstm", "OutputMode","last")              % BiLSTM层
    fullyConnectedLayer(num_class, "Name", "fc")                     % 全连接层
    softmaxLayer("Name", "softmax")                                  % softmax激活层
    classificationLayer("Name", "classification")];                  % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); 
                                                                     % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in");            % 激活层输出 连接 反折叠层输入

%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法
    'MaxEpochs', 500,...                 % 最大训练次数 1000
    'InitialLearnRate', best_lr,...          % 初始学习率为0.001
    'L2Regularization', best_l2,...         % L2正则化参数
    'LearnRateSchedule', 'piecewise',...  % 学习率下降
    'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 400,...        % 经过800次训练后 学习率为 0.001*0.1
    'Shuffle', 'every-epoch',...          % 每次训练打乱数据集
    'ValidationPatience', Inf,...         % 关闭验证
    'Plots', 'training-progress',...      % 画出曲线
    'Verbose', false);

%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502

[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
胖哥真不错6 天前
Python基于TensorFlow实现双向长短时记忆循环神经网络加注意力机制回归模型(BiLSTM-Attention回归算法)项目实战
python·tensorflow·attention·项目实战·bilstm·双向长短时记忆循环神经网络·注意力机制回归模型
胖哥真不错6 天前
Python基于TensorFlow实现双向循环神经网络GRU加注意力机制分类模型(BiGRU-Attention分类算法)项目实战
python·tensorflow·attention·项目实战·bigru·双向循环神经网络gru·注意力机制分类模型
机器学习之心10 天前
SCI一区级 | Matlab实现SSA-TCN-LSTM-Attention多变量时间序列预测
人工智能·matlab·lstm·attention·多变量时间序列预测·ssa-tcn-lstm
CS_木成河2 个月前
【HuggingFace Transformers】OpenAIGPTModel的核心——Block源码解析
人工智能·gpt·深度学习·transformer·openai·attention·mlp
SpikeKing2 个月前
LLM - GPT(Decoder Only) 类模型的 KV Cache 公式与原理 教程
gpt·attention·公式·矩阵乘法·kv cache·decoderonly·键值缓存
逐梦苍穹3 个月前
【NLP】注意力机制:规则、作用、原理、实现方式
人工智能·自然语言处理·attention·注意力机制
胖哥真不错3 个月前
Python基于TensorFlow实现卷积神经网络-双向长短时记忆循环神经网络分类模型(CNN-BiLSTM分类算法)项目实战
python·tensorflow·卷积神经网络·项目实战·cnn-bilstm·分类模型·双向长短时记忆循环神经网络
机器学习之心3 个月前
3D靓图!CEEMDAN-Kmeans-VMD-CNN-BiLSTM-Attention双重分解卷积双向长短期注意力多元时序预测
attention·kmeans·cnn-bilstm·ceemdan·kmeans-vmd·双重分解卷积双向长短期·注意力多元时序预测
机器学习之心3 个月前
靓图!多点创新!CEEMDAN-Kmeans-VMD-CNN-LSTM-Attention双重分解+卷积长短期+注意力多元时间序列预测
attention·cnn-lstm·ceemdan·双重分解·kmeans-vmd·卷积长短期记忆·注意力多元时间序列预测
机器学习之心4 个月前
SCI一区级 | Matlab实现SSA-CNN-GRU-Multihead-Attention多变量时间序列预测
matlab·cnn·gru·attention·多变量时间序列预测·ssa-cnn-gru