深入浅出Pytorch函数——torch.nn.Linear

分类目录:《深入浅出Pytorch函数》总目录


对输入数据做线性变换 y = x A T + b y=xA^T+b y=xAT+b

语法

复制代码
torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)

参数

  • in_features:[int] 每个输入样本的大小
  • out_features :[int] 每个输出样本的大小
  • bias:[bool] 若设置为False,则该层不会学习偏置项目,默认值为True

变量形状

  • 输入变量: ( N , in_features ) (N, \text{in\_features}) (N,in_features)
  • 输出变量: ( N , out_features ) (N, \text{out\_features}) (N,out_features)

变量

  • weight:模块中形状为 ( out_features , in_features ) (\text{out\_features}, \text{in\_features}) (out_features,in_features)的可学习权重项
  • bias :模块中形状为 out_features \text{out\_features} out_features的可学习偏置项

实例

复制代码
>>> m = nn.Linear(20, 30)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 30])

函数实现

复制代码
class Linear(Module):
    r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`

    This module supports :ref:`TensorFloat32<tf32_on_ampere>`.

    On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.

    Args:
        in_features: size of each input sample
        out_features: size of each output sample
        bias: If set to ``False``, the layer will not learn an additive bias.
            Default: ``True``

    Shape:
        - Input: :math:`(*, H_{in})` where :math:`*` means any number of
          dimensions including none and :math:`H_{in} = \text{in\_features}`.
        - Output: :math:`(*, H_{out})` where all but the last dimension
          are the same shape as the input and :math:`H_{out} = \text{out\_features}`.

    Attributes:
        weight: the learnable weights of the module of shape
            :math:`(\text{out\_features}, \text{in\_features})`. The values are
            initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
            :math:`k = \frac{1}{\text{in\_features}}`
        bias:   the learnable bias of the module of shape :math:`(\text{out\_features})`.
                If :attr:`bias` is ``True``, the values are initialized from
                :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
                :math:`k = \frac{1}{\text{in\_features}}`

    Examples::

        >>> m = nn.Linear(20, 30)
        >>> input = torch.randn(128, 20)
        >>> output = m(input)
        >>> print(output.size())
        torch.Size([128, 30])
    """
    __constants__ = ['in_features', 'out_features']
    in_features: int
    out_features: int
    weight: Tensor

    def __init__(self, in_features: int, out_features: int, bias: bool = True,
                 device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs))
        if bias:
            self.bias = Parameter(torch.empty(out_features, **factory_kwargs))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self) -> None:
        # Setting a=sqrt(5) in kaiming_uniform is the same as initializing with
        # uniform(-1/sqrt(in_features), 1/sqrt(in_features)). For details, see
        # https://github.com/pytorch/pytorch/issues/57109
        init.kaiming_uniform_(self.weight, a=math.sqrt(5))
        if self.bias is not None:
            fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
            bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
            init.uniform_(self.bias, -bound, bound)

    def forward(self, input: Tensor) -> Tensor:
        return F.linear(input, self.weight, self.bias)

    def extra_repr(self) -> str:
        return 'in_features={}, out_features={}, bias={}'.format(
            self.in_features, self.out_features, self.bias is not None
        )
相关推荐
小洛~·~6 分钟前
《深度学习入门:基于Python的理论与实现》第四章神经网络的学习—上篇(损失函数登场)
python·深度学习·神经网络
机器之心26 分钟前
AI也要007?Letta、伯克利提出「睡眠时间计算」,推理效率翻倍还不加钱
人工智能
机器之心29 分钟前
WSDM 25唯一最佳论文:从谱视角揭开推荐系统流行度偏差放大之谜
人工智能
新智元38 分钟前
国产 Vidu Q1 出道即顶流,登顶 VBench!吉卜力、广告大片、科幻特效全包了
人工智能·openai
人机与认知实验室1 小时前
宽度学习与深度学习
人工智能·深度学习·学习
新智元1 小时前
AI 永生时代来临!DeepMind「生成幽灵」让逝者赛博重生
人工智能·openai
HyperAI超神经1 小时前
【vLLM 学习】Aqlm 示例
java·开发语言·数据库·人工智能·学习·教程·vllm
cnbestec1 小时前
欣佰特携数十款机器人相关前沿产品,亮相第二届人形机器人和具身智能行业盛会
人工智能·机器人
爱的叹息1 小时前
关于 梯度下降算法、线性回归模型、梯度下降训练线性回归、线性回归的其他训练算法 以及 回归模型分类 的详细说明
人工智能·算法·回归·线性回归