神经网络基础-神经网络补充概念-50-学习率衰减

概念

学习率衰减(Learning Rate Decay)是一种优化算法,在训练深度学习模型时逐渐减小学习率,以便在训练的后期更加稳定地收敛到最优解。学习率衰减可以帮助在训练初期更快地靠近最优解,而在接近最优解时减小学习率可以使模型更精细地调整参数,从而更好地收敛。

实现方式

学习率衰减可以通过以下几种方式实现:

定期衰减:在训练的每个固定的迭代步骤,将学习率乘以一个衰减因子(通常小于1)。

指数衰减:使用指数函数来衰减学习率,例如每隔一定迭代步骤,将学习率按指数函数进行衰减。

分段衰减:将训练过程分成多个阶段,每个阶段使用不同的学习率。

代码实现(定期衰减)

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成随机数据
np.random.seed(0)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)

# 添加偏置项
X_b = np.c_[np.ones((100, 1)), X]

# 初始化参数
theta = np.random.randn(2, 1)

# 初始学习率
initial_learning_rate = 0.1

# 衰减因子
decay_factor = 0.9

# 迭代次数
n_iterations = 1000

# 学习率衰减
for iteration in range(n_iterations):
    learning_rate = initial_learning_rate / (1 + decay_factor * iteration)
    gradients = 2 / 100 * X_b.T.dot(X_b.dot(theta) - y)
    theta = theta - learning_rate * gradients

# 绘制数据和拟合直线
plt.scatter(X, y)
plt.plot(X, X_b.dot(theta), color='red')
plt.xlabel('X')
plt.ylabel('y')
plt.title('Linear Regression with Learning Rate Decay')
plt.show()

print("Intercept (theta0):", theta[0][0])
print("Slope (theta1):", theta[1][0])
相关推荐
阿坡RPA6 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户27784491049936 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心6 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI8 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
云上艺旅9 小时前
K8S学习之基础七十四:部署在线书店bookinfo
学习·云原生·容器·kubernetes
凯子坚持 c9 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得2059 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清9 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh10 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员10 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn