神经网络基础-神经网络补充概念-50-学习率衰减

概念

学习率衰减(Learning Rate Decay)是一种优化算法,在训练深度学习模型时逐渐减小学习率,以便在训练的后期更加稳定地收敛到最优解。学习率衰减可以帮助在训练初期更快地靠近最优解,而在接近最优解时减小学习率可以使模型更精细地调整参数,从而更好地收敛。

实现方式

学习率衰减可以通过以下几种方式实现:

定期衰减:在训练的每个固定的迭代步骤,将学习率乘以一个衰减因子(通常小于1)。

指数衰减:使用指数函数来衰减学习率,例如每隔一定迭代步骤,将学习率按指数函数进行衰减。

分段衰减:将训练过程分成多个阶段,每个阶段使用不同的学习率。

代码实现(定期衰减)

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成随机数据
np.random.seed(0)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)

# 添加偏置项
X_b = np.c_[np.ones((100, 1)), X]

# 初始化参数
theta = np.random.randn(2, 1)

# 初始学习率
initial_learning_rate = 0.1

# 衰减因子
decay_factor = 0.9

# 迭代次数
n_iterations = 1000

# 学习率衰减
for iteration in range(n_iterations):
    learning_rate = initial_learning_rate / (1 + decay_factor * iteration)
    gradients = 2 / 100 * X_b.T.dot(X_b.dot(theta) - y)
    theta = theta - learning_rate * gradients

# 绘制数据和拟合直线
plt.scatter(X, y)
plt.plot(X, X_b.dot(theta), color='red')
plt.xlabel('X')
plt.ylabel('y')
plt.title('Linear Regression with Learning Rate Decay')
plt.show()

print("Intercept (theta0):", theta[0][0])
print("Slope (theta1):", theta[1][0])
相关推荐
Larry_Yanan15 小时前
QML学习笔记(三十)QML的布局器(Layouts)
c++·笔记·qt·学习·ui
rengang6615 小时前
10-支持向量机(SVM):讲解基于最大间隔原则的分类算法
人工智能·算法·机器学习·支持向量机
用户51914958484516 小时前
如何通过内核版本检查判断FreeBSD是否需要重启
人工智能·aigc
聚客AI16 小时前
🥺单智能体总是翻车?可能是你缺了这份LangGraph多Agent架构指南
人工智能·llm·agent
szxinmai主板定制专家16 小时前
RK3588+AI算力卡替代英伟达jetson方案,大算力,支持FPGA自定义扩展
arm开发·人工智能·分布式·fpga开发
ccut 第一混17 小时前
c# 使用yolov5模型
人工智能·深度学习
PHOSKEY17 小时前
应用案例丨3D工业相机如何实现「焊接全工序守护」
人工智能
喜欢吃豆17 小时前
从指令到智能:大型语言模型提示词工程与上下文工程的综合分析
人工智能·语言模型·自然语言处理·大模型·提示词工程·上下文工程
Fuly102417 小时前
prompt构建技巧
人工智能·prompt
XXX-X-XXJ17 小时前
二:RAG 的 “语义密码”:向量、嵌入模型与 Milvus 向量数据库实操
人工智能·git·后端·python·django·milvus