神经网络基础-神经网络补充概念-50-学习率衰减

概念

学习率衰减(Learning Rate Decay)是一种优化算法,在训练深度学习模型时逐渐减小学习率,以便在训练的后期更加稳定地收敛到最优解。学习率衰减可以帮助在训练初期更快地靠近最优解,而在接近最优解时减小学习率可以使模型更精细地调整参数,从而更好地收敛。

实现方式

学习率衰减可以通过以下几种方式实现:

定期衰减:在训练的每个固定的迭代步骤,将学习率乘以一个衰减因子(通常小于1)。

指数衰减:使用指数函数来衰减学习率,例如每隔一定迭代步骤,将学习率按指数函数进行衰减。

分段衰减:将训练过程分成多个阶段,每个阶段使用不同的学习率。

代码实现(定期衰减)

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成随机数据
np.random.seed(0)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)

# 添加偏置项
X_b = np.c_[np.ones((100, 1)), X]

# 初始化参数
theta = np.random.randn(2, 1)

# 初始学习率
initial_learning_rate = 0.1

# 衰减因子
decay_factor = 0.9

# 迭代次数
n_iterations = 1000

# 学习率衰减
for iteration in range(n_iterations):
    learning_rate = initial_learning_rate / (1 + decay_factor * iteration)
    gradients = 2 / 100 * X_b.T.dot(X_b.dot(theta) - y)
    theta = theta - learning_rate * gradients

# 绘制数据和拟合直线
plt.scatter(X, y)
plt.plot(X, X_b.dot(theta), color='red')
plt.xlabel('X')
plt.ylabel('y')
plt.title('Linear Regression with Learning Rate Decay')
plt.show()

print("Intercept (theta0):", theta[0][0])
print("Slope (theta1):", theta[1][0])
相关推荐
AnnyYoung22 分钟前
华为云deepseek大模型平台:deepseek满血版
人工智能·ai·华为云
INDEMIND1 小时前
INDEMIND:AI视觉赋能服务机器人,“零”碰撞避障技术实现全天候安全
人工智能·视觉导航·服务机器人·商用机器人
慕容木木1 小时前
【全网最全教程】使用最强DeepSeekR1+联网的火山引擎,没有生成长度限制,DeepSeek本体的替代品,可本地部署+知识库,注册即可有750w的token使用
人工智能·火山引擎·deepseek·deepseek r1
南 阳1 小时前
百度搜索全面接入DeepSeek-R1满血版:AI与搜索的全新融合
人工智能·chatgpt
企鹅侠客2 小时前
开源免费文档翻译工具 可支持pdf、word、excel、ppt
人工智能·pdf·word·excel·自动翻译
冰淇淋百宝箱2 小时前
AI 安全时代:SDL与大模型结合的“王炸组合”——技术落地与实战指南
人工智能·安全
Elastic 中国社区官方博客3 小时前
Elasticsearch Open Inference API 增加了对 Jina AI 嵌入和 Rerank 模型的支持
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·jina
AWS官方合作商3 小时前
Amazon Lex:AI对话引擎重构企业服务新范式
人工智能·ai·机器人·aws
workflower3 小时前
Prompt Engineering的重要性
大数据·人工智能·设计模式·prompt·软件工程·需求分析·ai编程
陈无左耳、3 小时前
HarmonyOS学习第3天: 环境搭建开启鸿蒙开发新世界
学习·华为·harmonyos