神经网络基础-神经网络补充概念-50-学习率衰减

概念

学习率衰减(Learning Rate Decay)是一种优化算法,在训练深度学习模型时逐渐减小学习率,以便在训练的后期更加稳定地收敛到最优解。学习率衰减可以帮助在训练初期更快地靠近最优解,而在接近最优解时减小学习率可以使模型更精细地调整参数,从而更好地收敛。

实现方式

学习率衰减可以通过以下几种方式实现:

定期衰减:在训练的每个固定的迭代步骤,将学习率乘以一个衰减因子(通常小于1)。

指数衰减:使用指数函数来衰减学习率,例如每隔一定迭代步骤,将学习率按指数函数进行衰减。

分段衰减:将训练过程分成多个阶段,每个阶段使用不同的学习率。

代码实现(定期衰减)

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成随机数据
np.random.seed(0)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)

# 添加偏置项
X_b = np.c_[np.ones((100, 1)), X]

# 初始化参数
theta = np.random.randn(2, 1)

# 初始学习率
initial_learning_rate = 0.1

# 衰减因子
decay_factor = 0.9

# 迭代次数
n_iterations = 1000

# 学习率衰减
for iteration in range(n_iterations):
    learning_rate = initial_learning_rate / (1 + decay_factor * iteration)
    gradients = 2 / 100 * X_b.T.dot(X_b.dot(theta) - y)
    theta = theta - learning_rate * gradients

# 绘制数据和拟合直线
plt.scatter(X, y)
plt.plot(X, X_b.dot(theta), color='red')
plt.xlabel('X')
plt.ylabel('y')
plt.title('Linear Regression with Learning Rate Decay')
plt.show()

print("Intercept (theta0):", theta[0][0])
print("Slope (theta1):", theta[1][0])
相关推荐
yiersansiwu123d13 小时前
AI伦理治理:在创新与规范之间寻找平衡之道
人工智能
程途拾光15813 小时前
AI 生成内容的伦理边界:深度伪造与信息真实性的保卫战
人工智能
趣味科技v13 小时前
亚马逊云科技储瑞松:AI智能体正在重塑未来工作模式
人工智能·科技
GEO AI搜索优化助手13 小时前
GEO生态重构:生成式引擎优化如何重塑信息传播链
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
爱笑的眼睛1114 小时前
GraphQL:从数据查询到应用架构的范式演进
java·人工智能·python·ai
江上鹤.14814 小时前
Day40 复习日
人工智能·深度学习·机器学习
QYZL_AIGC14 小时前
全域众链以需求为基、政策为翼,创AI + 实体的可行之路
人工智能
火星资讯14 小时前
Zenlayer AI Gateway 登陆 Dify 市场,轻装上阵搭建 AI Agent
大数据·人工智能
TextIn智能文档云平台14 小时前
LLM处理非结构化文档有哪些痛点
人工智能·文档解析
Bathwind-w14 小时前
FOC开发工具学习
学习