Graph of Thoughts: Solving Elaborate Problems with Large Language Models

本文是LLM系列文章,针对《Graph of Thoughts: Solving Elaborate Problems with Large Language Models》的翻译。

思维图:用大语言模型解决复杂问题

  • 摘要
  • [1 引言](#1 引言)
  • [2 背景与符号](#2 背景与符号)
  • [3 GoT框架](#3 GoT框架)
  • [4 系统架构和扩展性](#4 系统架构和扩展性)
  • [5 用例示例](#5 用例示例)
  • [6 延迟量权衡](#6 延迟量权衡)
  • [7 评估](#7 评估)
  • [8 相关工作](#8 相关工作)
  • [9 结论](#9 结论)

摘要

我们介绍了思维图(GoT):这是一个框架,它将大型语言模型(LLM)中的提示能力提升到思维链或思维树(ToT)等范式之外。GoT的关键思想和主要优势是能够将LLM生成的信息建模为任意图,其中信息单元("LLM思想")是顶点,边对应于这些顶点之间的依赖关系。这种方法能够将任意LLM思想组合成协同结果,提取整个思想网络的本质,或使用反馈循环增强思想。我们说明了GoT在不同任务上比现有技术具有优势,例如,与ToT相比,排序质量提高了62%,同时成本降低了31%以上。我们确保GoT可以通过新的思想转换进行扩展,从而可以用于引导新的提示方案。这项工作使LLM推理更接近人类思维或大脑机制,如复现,两者都形成了复杂的网络。

1 引言

2 背景与符号

3 GoT框架

4 系统架构和扩展性

5 用例示例

6 延迟量权衡

7 评估

8 相关工作

9 结论

提示工程是大型语言模型(LLM)研究的核心新领域之一。它能够有效地使用LLM,而无需任何模型更新。然而,设计有效的提示是一项具有挑战性的任务。

在这项工作中,我们提出了思维图(GoT),这是一种新的范式,使LLM能够在没有任何模型更新的情况下有效地解决不同的任务。关键思想是将LLM推理建模为任意图,其中思想是顶点,思想之间的依赖关系是边。

这使得思想能够进行新颖的转换,例如聚合。人类的任务解决通常是非线性的,它包括将中间解决方案组合成最终解决方案,或者在发现新的见解时改变推理流程。GoT通过其图形结构反映了这一点。

GoT优于其他提示方案,例如,确保排序质量比ToT提高62%,同时降低成本>31%。我们还为提示方案提出了一个新的度量,即思维量,以指示给定LLM输出可以携带的信息范围,其中GoT也很出色。这为更具原则性的提示工程迈出了一步。

相关推荐
WLJT1231231234 分钟前
生活电器:重构家居体验的产业变革与发展探索
大数据·人工智能·科技·生活
~~李木子~~4 分钟前
聚类算法实战:从 KMeans 到 DBSCAN
人工智能·机器学习·支持向量机
落羽的落羽1 小时前
【Linux系统】从零掌握make与Makefile:高效自动化构建项目的工具
linux·服务器·开发语言·c++·人工智能·机器学习·1024程序员节
应用市场1 小时前
VSCode + AI Agent实现直接编译调试:告别Visual Studio的原理与实践
人工智能·vscode·visual studio
GIS数据转换器1 小时前
城市基础设施安全运行监管平台
大数据·运维·人工智能·物联网·安全·无人机·1024程序员节
遇雪长安1 小时前
深度学习YOLO实战:4、模型的三要素:任务、类别与规模
人工智能·深度学习·yolo
搞科研的小刘选手1 小时前
【云计算专题会议】第二届云计算与大数据国际学术会议(ICCBD 2025)
大数据·人工智能·物联网·5g·云计算·6g·智能通信
电商软件开发 小银1 小时前
微信生态新机遇:视频号推客模式助力商家突围
大数据·人工智能·twitter·系统开发·实体店转型·数字化经济·视频号推客模式
综合热讯1 小时前
湖南粒界教育科技有限公司:专注影视职业教育,AI辅助教学提升学习实效
人工智能·科技·学习
深兰科技1 小时前
深兰科技法务大模型亮相,推动律所文书处理智能化
人工智能·scrapy·beautifulsoup·scikit-learn·pyqt·fastapi·深兰科技