Graph of Thoughts: Solving Elaborate Problems with Large Language Models

本文是LLM系列文章,针对《Graph of Thoughts: Solving Elaborate Problems with Large Language Models》的翻译。

思维图:用大语言模型解决复杂问题

  • 摘要
  • [1 引言](#1 引言)
  • [2 背景与符号](#2 背景与符号)
  • [3 GoT框架](#3 GoT框架)
  • [4 系统架构和扩展性](#4 系统架构和扩展性)
  • [5 用例示例](#5 用例示例)
  • [6 延迟量权衡](#6 延迟量权衡)
  • [7 评估](#7 评估)
  • [8 相关工作](#8 相关工作)
  • [9 结论](#9 结论)

摘要

我们介绍了思维图(GoT):这是一个框架,它将大型语言模型(LLM)中的提示能力提升到思维链或思维树(ToT)等范式之外。GoT的关键思想和主要优势是能够将LLM生成的信息建模为任意图,其中信息单元("LLM思想")是顶点,边对应于这些顶点之间的依赖关系。这种方法能够将任意LLM思想组合成协同结果,提取整个思想网络的本质,或使用反馈循环增强思想。我们说明了GoT在不同任务上比现有技术具有优势,例如,与ToT相比,排序质量提高了62%,同时成本降低了31%以上。我们确保GoT可以通过新的思想转换进行扩展,从而可以用于引导新的提示方案。这项工作使LLM推理更接近人类思维或大脑机制,如复现,两者都形成了复杂的网络。

1 引言

2 背景与符号

3 GoT框架

4 系统架构和扩展性

5 用例示例

6 延迟量权衡

7 评估

8 相关工作

9 结论

提示工程是大型语言模型(LLM)研究的核心新领域之一。它能够有效地使用LLM,而无需任何模型更新。然而,设计有效的提示是一项具有挑战性的任务。

在这项工作中,我们提出了思维图(GoT),这是一种新的范式,使LLM能够在没有任何模型更新的情况下有效地解决不同的任务。关键思想是将LLM推理建模为任意图,其中思想是顶点,思想之间的依赖关系是边。

这使得思想能够进行新颖的转换,例如聚合。人类的任务解决通常是非线性的,它包括将中间解决方案组合成最终解决方案,或者在发现新的见解时改变推理流程。GoT通过其图形结构反映了这一点。

GoT优于其他提示方案,例如,确保排序质量比ToT提高62%,同时降低成本>31%。我们还为提示方案提出了一个新的度量,即思维量,以指示给定LLM输出可以携带的信息范围,其中GoT也很出色。这为更具原则性的提示工程迈出了一步。

相关推荐
Yxh181377845541 分钟前
抖去推--短视频矩阵系统源码开发
人工智能·python·矩阵
取酒鱼食--【余九】34 分钟前
rl_sar实现sim2real的整体思路
人工智能·笔记·算法·rl_sar
Jamence1 小时前
多模态大语言模型arxiv论文略读(111)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
归去_来兮1 小时前
图神经网络(GNN)模型的基本原理
大数据·人工智能·深度学习·图神经网络·gnn
爱吃饼干的熊猫1 小时前
PlayDiffusion上线:AI语音编辑进入“无痕时代”
人工智能·语音识别
SelectDB技术团队1 小时前
Apache Doris + MCP:Agent 时代的实时数据分析底座
人工智能·数据挖掘·数据分析·apache·mcp
Leinwin1 小时前
微软推出SQL Server 2025技术预览版,深化人工智能应用集成
人工智能·microsoft
CareyWYR2 小时前
每周AI论文速递(2506202-250606)
人工智能
点云SLAM2 小时前
PyTorch 中contiguous函数使用详解和代码演示
人工智能·pytorch·python·3d深度学习·contiguous函数·张量内存布局优化·张量操作