Graph of Thoughts: Solving Elaborate Problems with Large Language Models

本文是LLM系列文章,针对《Graph of Thoughts: Solving Elaborate Problems with Large Language Models》的翻译。

思维图:用大语言模型解决复杂问题

  • 摘要
  • [1 引言](#1 引言)
  • [2 背景与符号](#2 背景与符号)
  • [3 GoT框架](#3 GoT框架)
  • [4 系统架构和扩展性](#4 系统架构和扩展性)
  • [5 用例示例](#5 用例示例)
  • [6 延迟量权衡](#6 延迟量权衡)
  • [7 评估](#7 评估)
  • [8 相关工作](#8 相关工作)
  • [9 结论](#9 结论)

摘要

我们介绍了思维图(GoT):这是一个框架,它将大型语言模型(LLM)中的提示能力提升到思维链或思维树(ToT)等范式之外。GoT的关键思想和主要优势是能够将LLM生成的信息建模为任意图,其中信息单元("LLM思想")是顶点,边对应于这些顶点之间的依赖关系。这种方法能够将任意LLM思想组合成协同结果,提取整个思想网络的本质,或使用反馈循环增强思想。我们说明了GoT在不同任务上比现有技术具有优势,例如,与ToT相比,排序质量提高了62%,同时成本降低了31%以上。我们确保GoT可以通过新的思想转换进行扩展,从而可以用于引导新的提示方案。这项工作使LLM推理更接近人类思维或大脑机制,如复现,两者都形成了复杂的网络。

1 引言

2 背景与符号

3 GoT框架

4 系统架构和扩展性

5 用例示例

6 延迟量权衡

7 评估

8 相关工作

9 结论

提示工程是大型语言模型(LLM)研究的核心新领域之一。它能够有效地使用LLM,而无需任何模型更新。然而,设计有效的提示是一项具有挑战性的任务。

在这项工作中,我们提出了思维图(GoT),这是一种新的范式,使LLM能够在没有任何模型更新的情况下有效地解决不同的任务。关键思想是将LLM推理建模为任意图,其中思想是顶点,思想之间的依赖关系是边。

这使得思想能够进行新颖的转换,例如聚合。人类的任务解决通常是非线性的,它包括将中间解决方案组合成最终解决方案,或者在发现新的见解时改变推理流程。GoT通过其图形结构反映了这一点。

GoT优于其他提示方案,例如,确保排序质量比ToT提高62%,同时降低成本>31%。我们还为提示方案提出了一个新的度量,即思维量,以指示给定LLM输出可以携带的信息范围,其中GoT也很出色。这为更具原则性的提示工程迈出了一步。

相关推荐
Christo3几秒前
SIGKDD-2023《Complementary Classifier Induced Partial Label Learning》
人工智能·深度学习·机器学习
AIGC安琪12 分钟前
Transformer中的编码器和解码器是什么?
人工智能·深度学习·ai·语言模型·大模型·transformer·ai大模型
算家计算24 分钟前
3秒搞定产品换装换背景!【ComfyUI-万物迁移工作流】本地部署教程:基于FLUX.1 Kontext上下文感知图像编辑
人工智能
山烛33 分钟前
OpenCV 图像处理基础操作指南(二)
人工智能·python·opencv·计算机视觉
聚客AI44 分钟前
🧩万亿级Token训练!解密大模型预训练算力黑洞与RLHF对齐革命
人工智能·llm·强化学习
爱疯生活1 小时前
车e估牵头正式启动乘用车金融价值评估师编制
大数据·人工智能·金融
JXL18601 小时前
机器学习概念(面试题库)
人工智能·机器学习
星期天要睡觉1 小时前
机器学习深度学习 所需数据的清洗实战案例 (结构清晰、万字解析、完整代码)包括机器学习方法预测缺失值的实践
人工智能·深度学习·机器学习·数据挖掘
岁月静好20252 小时前
BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain
人工智能·机器学习
说私域2 小时前
基于开源 AI 大模型 AI 智能名片 S2B2C 商城小程序视角下的企业组织能力建设与破圈升级
人工智能·小程序