深入浅出Pytorch函数——torch.nn.init.kaiming_uniform_

分类目录:《深入浅出Pytorch函数》总目录

相关文章:

· 深入浅出Pytorch函数------torch.nn.init.calculate_gain

· 深入浅出Pytorch函数------torch.nn.init.uniform_

· 深入浅出Pytorch函数------torch.nn.init.normal_

· 深入浅出Pytorch函数------torch.nn.init.constant_

· 深入浅出Pytorch函数------torch.nn.init.ones_

· 深入浅出Pytorch函数------torch.nn.init.zeros_

· 深入浅出Pytorch函数------torch.nn.init.eye_

· 深入浅出Pytorch函数------torch.nn.init.dirac_

· 深入浅出Pytorch函数------torch.nn.init.xavier_uniform_

· 深入浅出Pytorch函数------torch.nn.init.xavier_normal_

· 深入浅出Pytorch函数------torch.nn.init.kaiming_uniform_

· 深入浅出Pytorch函数------torch.nn.init.kaiming_normal_

· 深入浅出Pytorch函数------torch.nn.init.trunc_normal_

· 深入浅出Pytorch函数------torch.nn.init.orthogonal_

· 深入浅出Pytorch函数------torch.nn.init.sparse_


torch.nn.init模块中的所有函数都用于初始化神经网络参数,因此它们都在torc.no_grad()模式下运行,autograd不会将其考虑在内。

根据He, K等人于2015年在《Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification》中描述的方法,用一个均匀分布生成值,填充输入的张量或变量。结果张量中的值采样自 U ( − bound , bound ) U(-\text{bound}, \text{bound}) U(−bound,bound),其中:
bound = gain × 3 fan_mode \text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan\_mode}}} bound=gain×fan_mode3

这种方法也被称为He initialisation。

语法

复制代码
torch.nn.init.kaiming_uniform_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')

参数

  • tensor:[Tensor] 一个 N N N维张量torch.Tensor
  • a:[float] 这层之后使用的rectifier的斜率系数(ReLU的默认值为0)
  • mode:[str] 可以为fan_infan_out。若为fan_in则保留前向传播时权值方差的量级,若为fan_out则保留反向传播时的量级,默认值为fan_in
  • nonlinearity:[str] 一个非线性函数,即一个nn.functional的名称,推荐使用relu或者leaky_relu,默认值为leaky_relu

返回值

一个torch.Tensor且参数tensor也会更新

实例

复制代码
w = torch.empty(3, 5)
nn.init.kaiming_uniform_(w, mode='fan_in', nonlinearity='relu')

函数实现

复制代码
def kaiming_uniform_(
    tensor: Tensor, a: float = 0, mode: str = 'fan_in', nonlinearity: str = 'leaky_relu'
):
    r"""Fills the input `Tensor` with values according to the method
    described in `Delving deep into rectifiers: Surpassing human-level
    performance on ImageNet classification` - He, K. et al. (2015), using a
    uniform distribution. The resulting tensor will have values sampled from
    :math:`\mathcal{U}(-\text{bound}, \text{bound})` where

    .. math::
        \text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan\_mode}}}

    Also known as He initialization.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        a: the negative slope of the rectifier used after this layer (only
            used with ``'leaky_relu'``)
        mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``
            preserves the magnitude of the variance of the weights in the
            forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the
            backwards pass.
        nonlinearity: the non-linear function (`nn.functional` name),
            recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default).

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.kaiming_uniform_(w, mode='fan_in', nonlinearity='relu')
    """
    if torch.overrides.has_torch_function_variadic(tensor):
        return torch.overrides.handle_torch_function(
            kaiming_uniform_,
            (tensor,),
            tensor=tensor,
            a=a,
            mode=mode,
            nonlinearity=nonlinearity)

    if 0 in tensor.shape:
        warnings.warn("Initializing zero-element tensors is a no-op")
        return tensor
    fan = _calculate_correct_fan(tensor, mode)
    gain = calculate_gain(nonlinearity, a)
    std = gain / math.sqrt(fan)
    bound = math.sqrt(3.0) * std  # Calculate uniform bounds from standard deviation
    with torch.no_grad():
        return tensor.uniform_(-bound, bound)
相关推荐
后台开发者Ethan1 分钟前
Python需要了解的一些知识
开发语言·人工智能·python
猫头虎21 分钟前
猫头虎AI分享|一款Coze、Dify类开源AI应用超级智能体快速构建工具:FastbuildAI
人工智能·开源·prompt·github·aigc·ai编程·ai-native
重启的码农38 分钟前
ggml 介绍 (6) 后端 (ggml_backend)
c++·人工智能·神经网络
重启的码农38 分钟前
ggml介绍 (7)后端缓冲区 (ggml_backend_buffer)
c++·人工智能·神经网络
数据智能老司机39 分钟前
面向企业的图学习扩展——图简介
人工智能·机器学习·ai编程
盼小辉丶39 分钟前
PyTorch生成式人工智能——使用MusicGen生成音乐
pytorch·python·深度学习·生成模型
mit6.8241 小时前
[AI React Web] 包与依赖管理 | `axios`库 | `framer-motion`库
前端·人工智能·react.js
小阿鑫2 小时前
不要太信任Cursor,这位网友被删库了。。。
人工智能·aigc·cursor·部署mcp
说私域2 小时前
基于定制开发开源 AI 智能名片 S2B2C 商城小程序的热点与人工下发策略研究
人工智能·小程序
Tiger Z2 小时前
《动手学深度学习v2》学习笔记 | 1. 引言
pytorch·深度学习·ai编程