国际旅游网络的大数据分析(数学建模练习题)

题目:国际旅游网络的大数据分析

伴随着大数据时代的到来,数据分析已经深入到现代社会生活中的各个方面。

无论是国家政府部门、企事业单位还是个人,数据分析工作都是进行决策之前的

重要环节。

山东省应用统计学会是在省民政厅注册的学术类社会组织,于 1989 年成立。

学会是全省目前从事统计调查和绩效评估机构中唯一的 4A 级学会,是省科协的

组成单位和省社科联的直属学会,拥有统计调查、绩效评估、综合评价、社会组

织评估、科技评价、旅游信息调查、区域发展规划、区域经济等方面的人才优势,

尤其在统计调查、第三方评估、决策咨询研究等方面优势突出,拥有多个专业的

评估专家库和专家服务团。

目前,旅游业之所以重要,是因为它可以通过创造就业机会、创造收入以及

促进基础设施和服务的发展,为一个国家的经济做出重大贡献。它还可以促进世

界各地人民之间的文化交流和理解,并有助于保护自然和文化遗产。

附件中的数据集包含各国的国际旅游人数的信息。这些数据可以帮助研究人

员、政策制定者和企业深入了解旅游业及其对世界各地的影响。该数据集包括

1995 年至 2020 年 100 多个国家的国际旅游人数信息,数据来源于世界银行。

请你们进行数据统计与调查分析,使用附件中的数据,回答下列问题:

⚫ 问题 1: 请进行分类汇总统计,计算不同国家 1995 年至 2020 年累计旅游总

人数,从哪个国家旅游出发的人数最多,哪个国家旅游到达的人数最多?

⚫ 问题 2: 请任选一个国家,建立国家旅游出发人数的预测模型,基于该国家

1995 年至 2020 年的旅游出发人数,预测 2030 和 2050 年的旅游出发人数。

⚫ 问题 3: 请进行数据统计,建立不同国家旅游的网络模型,分析哪两个国家

之间的旅游最为频繁?并分析这种频繁关系随时间的变化。

⚫ 问题 4: 请分析附件中的数据,基于时间、旅游人数、旅游出发地和目的地,

你们还可以分析得出哪些结论,并进行数据的挖掘和可视化分析

我负责的是第一和四问题

问题一

python 复制代码
import pandas as pd
import openpyxl
# 读取CSV文件数据
data = pd.read_csv(r'C:\Users\Desktop\1\A题附件:国际旅游人数.csv', encoding='gbk')

# 计算不同国家1995年至2020年的累计旅游总人数
country_departure = data.groupby('旅游出发国家')['国际旅游人数'].sum().reset_index()
country_arrival = data.groupby('旅游到达国家')['国际旅游人数'].sum().reset_index()

# 找到出发国家和到达国家的人数最多的国家
max_departure_country = country_departure.loc[country_departure['国际旅游人数'].idxmax()]
max_arrival_country = country_arrival.loc[country_arrival['国际旅游人数'].idxmax()]

# 输出结果
print("不同国家1995年至2020年的累计旅游总人数:")
print(country_departure)
print("\n从哪个国家旅游出发的人数最多:")
print(max_departure_country)
print("\n哪个国家旅游到达的人数最多:")
print(max_arrival_country)
# 将结果输出为Excel文件
with pd.ExcelWriter('统计结果.xlsx') as writer:
    country_departure.to_excel(writer, sheet_name='出发国家统计', index=False)
    country_arrival.to_excel(writer, sheet_name='到达国家统计', index=False)
    max_departure_country.to_excel(writer, sheet_name='出发国家最多人数', index=False)
    max_arrival_country.to_excel(writer, sheet_name='到达国家最多人数', index=False)

题目四

python 复制代码
import pandas as pd
import matplotlib.pyplot as plt

# 读取数据集
data = pd.read_csv(r'C:\Users\Desktop\1\A题附件:国际旅游人数.csv', encoding='gbk')

# 查看数据前几行
print(data.head())

# 统计每个年份的国际旅游人数总和
yearly_total = data.groupby('年份')['国际旅游人数'].sum()
print(yearly_total)

# 统计每个旅游出发国家的总旅游人数
departure_total = data.groupby('旅游出发国家')['国际旅游人数'].sum()
print(departure_total)

# 统计每个旅游到达国家的总旅游人数
arrival_total = data.groupby('旅游到达国家')['国际旅游人数'].sum()
print(arrival_total)

# 可视化分析:绘制每年国际旅游人数总和的折线图
yearly_total.plot(kind='line')
plt.xlabel('Year')
plt.ylabel('Total International Tourists')
plt.title('Yearly Total International Tourists')
plt.show()



结论:从年度国际旅游人数总和分析:通过统计每个年份的国际旅游人数总和,我们可以了解到每年国际旅游的整体趋势。通过绘制折线图,我们可以观察到旅游人数是先曲线增长,然后直线下降的。

相关推荐
李昊哲小课43 分钟前
销售数据可视化分析项目
python·信息可视化·数据分析·matplotlib·数据可视化·seaborn
isNotNullX1 小时前
实时数仓和离线数仓还分不清楚?看完就懂了
大数据·数据库·数据仓库·人工智能·数据分析
李昊哲小课1 小时前
pandas销售数据分析
人工智能·python·数据挖掘·数据分析·pandas
Leo.yuan3 小时前
数据分析师如何构建自己的底层逻辑?
大数据·数据仓库·人工智能·数据挖掘·数据分析
Better Rose5 小时前
【2025 年第十五届 APMCM数学建模竞赛】B题 问题一、二模型建立与求解
数学建模
xinxunkandian5 小时前
需求升级,创新破局!苏州金龙赋能旅游客运新生态
旅游
zhangfeng11336 小时前
python 数据分析 单细胞测序数据分析 相关的图表,常见于肿瘤免疫微环境、细胞亚群功能研究 ,各图表类型及逻辑关系如下
开发语言·python·数据分析·医学
UI罐头6 小时前
如何选择数据可视化工具?从设计效率到图表表现力全解读
信息可视化·数据分析·数据工具
kjyxs21 小时前
Tourism Management and Technology Economy,旅游管理与技术经济知网期刊
旅游