pytorch 入门1-tensor 广播 view reshape

  • tensor 的四则运算
  • broadcast
python 复制代码
import torch
import numpy as np
# 张量tensor  随机初始化
x = torch.rand(4,3)
print(x)
y =torch.randn(4,3)
print(y)
python 复制代码
# 初始化全零 张量
a = torch.zeros((4,4),dtype=torch.long)
print(a)
#初始化全一 张量
b = torch.ones(4,4)
print(b)
c = torch.tensor(np.ones((2,3),dtype='int32'))
print(c)

常见的构造Tensor的方法:

python 复制代码
# tensor 的基本操作
# 加法
print(a+b)
# add_ = replace in 操作
y = a.add_(3)
print(y)

out:

python 复制代码
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
tensor([[3, 3, 3, 3],
        [3, 3, 3, 3],
        [3, 3, 3, 3],
        [3, 3, 3, 3]])
python 复制代码
#索引操作
x = torch.rand(3,4)
print(x)
# 第二列
print(x[:,1])
# 第二行
print(x[1,:])
python 复制代码
#维度变换 张量的维度变换常见的方法有torch.view()和torch.reshape()
x = torch.randn(4,3)
y = x.view(12)
z = x.view(-1,6)
print(x.size(),y.size(),z.size())
print(x)
print(z)
# 最后x tensor size 没有发生改变
#view()仅仅是改变了对这个张量的观察角度
print(x)
python 复制代码
#我们希望原始张量和变换后的张量互相不影响。
#为了使创建的张量和原始张量不共享内存,我们需要使用第二种方法torch.reshape(), 
#同样可以改变张量的形状,但是此函数并不能保证返回的是其拷贝值,所以官方不推荐使用
a = torch.randn(4,4)
b = a.reshape(2,8)
print(a)
print(b)
python 复制代码
#广播机制
#当对两个形状不同的 Tensor 按元素运算时,可能会触发广播(broadcasting)机制:先适当复制元素使这两个 Tensor 形状相同后再按元素运算。
x = torch.arange(1,4).view(1,3)
print(x)
y = torch.arange(1,5).view(4,1)
print(y)
print(x+y)
相关推荐
迅易科技25 分钟前
借助腾讯云质检平台的新范式,做工业制造企业质检的“AI慧眼”
人工智能·视觉检测·制造
古希腊掌管学习的神1 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI2 小时前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长3 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
梧桐树04293 小时前
python常用内建模块:collections
python
AI_NEW_COME3 小时前
知识库管理系统可扩展性深度测评
人工智能
Dream_Snowar4 小时前
速通Python 第三节
开发语言·python
海棠AI实验室4 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself4 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董5 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类