pytorch 入门1-tensor 广播 view reshape

  • tensor 的四则运算
  • broadcast
python 复制代码
import torch
import numpy as np
# 张量tensor  随机初始化
x = torch.rand(4,3)
print(x)
y =torch.randn(4,3)
print(y)
python 复制代码
# 初始化全零 张量
a = torch.zeros((4,4),dtype=torch.long)
print(a)
#初始化全一 张量
b = torch.ones(4,4)
print(b)
c = torch.tensor(np.ones((2,3),dtype='int32'))
print(c)

常见的构造Tensor的方法:

python 复制代码
# tensor 的基本操作
# 加法
print(a+b)
# add_ = replace in 操作
y = a.add_(3)
print(y)

out:

python 复制代码
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
tensor([[3, 3, 3, 3],
        [3, 3, 3, 3],
        [3, 3, 3, 3],
        [3, 3, 3, 3]])
python 复制代码
#索引操作
x = torch.rand(3,4)
print(x)
# 第二列
print(x[:,1])
# 第二行
print(x[1,:])
python 复制代码
#维度变换 张量的维度变换常见的方法有torch.view()和torch.reshape()
x = torch.randn(4,3)
y = x.view(12)
z = x.view(-1,6)
print(x.size(),y.size(),z.size())
print(x)
print(z)
# 最后x tensor size 没有发生改变
#view()仅仅是改变了对这个张量的观察角度
print(x)
python 复制代码
#我们希望原始张量和变换后的张量互相不影响。
#为了使创建的张量和原始张量不共享内存,我们需要使用第二种方法torch.reshape(), 
#同样可以改变张量的形状,但是此函数并不能保证返回的是其拷贝值,所以官方不推荐使用
a = torch.randn(4,4)
b = a.reshape(2,8)
print(a)
print(b)
python 复制代码
#广播机制
#当对两个形状不同的 Tensor 按元素运算时,可能会触发广播(broadcasting)机制:先适当复制元素使这两个 Tensor 形状相同后再按元素运算。
x = torch.arange(1,4).view(1,3)
print(x)
y = torch.arange(1,5).view(4,1)
print(y)
print(x+y)
相关推荐
2501_9245348938 分钟前
智慧零售商品识别误报率↓74%!陌讯多模态融合算法在自助结算场景的落地优化
大数据·人工智能·算法·计算机视觉·目标跟踪·视觉检测·零售
盖雅工场40 分钟前
连锁零售排班难?自动排班系统来解决
大数据·人工智能·物联网·算法·零售
bryant_meng2 小时前
【Apache MXNet】
人工智能·apache·mxnet
UMI赋能企业3 小时前
企业视频库管理高效策略
大数据·人工智能
爱隐身的官人3 小时前
爬虫基础学习-爬取网页项目(二)
前端·爬虫·python·学习
一念&5 小时前
今日科技热点 | AI加速变革,量子计算商用化,5G应用新机遇
人工智能·科技·量子计算
Ysn07195 小时前
pytorch_grad_cam 库学习笔记—— Ablation-CAM 算法的基类 AblationCAM 和 AblationLayer
pytorch·笔记·学习
严文文-Chris5 小时前
【GPT-5 与 GPT-4 的主要区别?】
人工智能·gpt
刘恒1234567895 小时前
Pycharm
ide·python·pycharm
过往入尘土6 小时前
计算机视觉:从 “看见” 到 “理解”,解锁机器感知世界的密码
人工智能