pytorch 入门1-tensor 广播 view reshape

  • tensor 的四则运算
  • broadcast
python 复制代码
import torch
import numpy as np
# 张量tensor  随机初始化
x = torch.rand(4,3)
print(x)
y =torch.randn(4,3)
print(y)
python 复制代码
# 初始化全零 张量
a = torch.zeros((4,4),dtype=torch.long)
print(a)
#初始化全一 张量
b = torch.ones(4,4)
print(b)
c = torch.tensor(np.ones((2,3),dtype='int32'))
print(c)

常见的构造Tensor的方法:

python 复制代码
# tensor 的基本操作
# 加法
print(a+b)
# add_ = replace in 操作
y = a.add_(3)
print(y)

out:

python 复制代码
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
tensor([[3, 3, 3, 3],
        [3, 3, 3, 3],
        [3, 3, 3, 3],
        [3, 3, 3, 3]])
python 复制代码
#索引操作
x = torch.rand(3,4)
print(x)
# 第二列
print(x[:,1])
# 第二行
print(x[1,:])
python 复制代码
#维度变换 张量的维度变换常见的方法有torch.view()和torch.reshape()
x = torch.randn(4,3)
y = x.view(12)
z = x.view(-1,6)
print(x.size(),y.size(),z.size())
print(x)
print(z)
# 最后x tensor size 没有发生改变
#view()仅仅是改变了对这个张量的观察角度
print(x)
python 复制代码
#我们希望原始张量和变换后的张量互相不影响。
#为了使创建的张量和原始张量不共享内存,我们需要使用第二种方法torch.reshape(), 
#同样可以改变张量的形状,但是此函数并不能保证返回的是其拷贝值,所以官方不推荐使用
a = torch.randn(4,4)
b = a.reshape(2,8)
print(a)
print(b)
python 复制代码
#广播机制
#当对两个形状不同的 Tensor 按元素运算时,可能会触发广播(broadcasting)机制:先适当复制元素使这两个 Tensor 形状相同后再按元素运算。
x = torch.arange(1,4).view(1,3)
print(x)
y = torch.arange(1,5).view(4,1)
print(y)
print(x+y)
相关推荐
HyperAI超神经3 分钟前
软银/英伟达/红杉资本/贝佐斯等参投,机器人初创公司Skild AI融资14亿美元,打造通用基础模型
人工智能·深度学习·机器学习·机器人·ai编程
yufuu984 分钟前
Python在金融科技(FinTech)中的应用
jvm·数据库·python
数说星榆1816 分钟前
边缘计算革命:终端设备的本地化智能
人工智能·边缘计算
电饭叔9 分钟前
GUI by Python 6 一段 gui 代码分析
开发语言·python
OnYoung9 分钟前
持续集成/持续部署(CI/CD) for Python
jvm·数据库·python
2301_8223776510 分钟前
高级爬虫技巧:处理JavaScript渲染(Selenium)
jvm·数据库·python
u01092727111 分钟前
用Python和Twilio构建短信通知系统
jvm·数据库·python
墨染天姬11 分钟前
【AI】KIMI2.5---开源榜第一
人工智能·开源
智驱力人工智能13 分钟前
实线变道检测 高架道路安全治理的工程化实践 隧道压实线监测方案 城市快速路压实线实时预警 压实线与车牌识别联动方案
人工智能·opencv·算法·安全·yolo·边缘计算
萤丰信息16 分钟前
智慧园区:以技术赋能,构筑安全便捷的现代化生态空间
大数据·人工智能·科技·安全·智慧城市·智慧园区