pytorch 入门1-tensor 广播 view reshape

  • tensor 的四则运算
  • broadcast
python 复制代码
import torch
import numpy as np
# 张量tensor  随机初始化
x = torch.rand(4,3)
print(x)
y =torch.randn(4,3)
print(y)
python 复制代码
# 初始化全零 张量
a = torch.zeros((4,4),dtype=torch.long)
print(a)
#初始化全一 张量
b = torch.ones(4,4)
print(b)
c = torch.tensor(np.ones((2,3),dtype='int32'))
print(c)

常见的构造Tensor的方法:

python 复制代码
# tensor 的基本操作
# 加法
print(a+b)
# add_ = replace in 操作
y = a.add_(3)
print(y)

out:

python 复制代码
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
tensor([[3, 3, 3, 3],
        [3, 3, 3, 3],
        [3, 3, 3, 3],
        [3, 3, 3, 3]])
python 复制代码
#索引操作
x = torch.rand(3,4)
print(x)
# 第二列
print(x[:,1])
# 第二行
print(x[1,:])
python 复制代码
#维度变换 张量的维度变换常见的方法有torch.view()和torch.reshape()
x = torch.randn(4,3)
y = x.view(12)
z = x.view(-1,6)
print(x.size(),y.size(),z.size())
print(x)
print(z)
# 最后x tensor size 没有发生改变
#view()仅仅是改变了对这个张量的观察角度
print(x)
python 复制代码
#我们希望原始张量和变换后的张量互相不影响。
#为了使创建的张量和原始张量不共享内存,我们需要使用第二种方法torch.reshape(), 
#同样可以改变张量的形状,但是此函数并不能保证返回的是其拷贝值,所以官方不推荐使用
a = torch.randn(4,4)
b = a.reshape(2,8)
print(a)
print(b)
python 复制代码
#广播机制
#当对两个形状不同的 Tensor 按元素运算时,可能会触发广播(broadcasting)机制:先适当复制元素使这两个 Tensor 形状相同后再按元素运算。
x = torch.arange(1,4).view(1,3)
print(x)
y = torch.arange(1,5).view(4,1)
print(y)
print(x+y)
相关推荐
GeeLark1 分钟前
GeeLark 9月功能更新回顾
人工智能
mwq3012314 分钟前
GPT-2 中的 Pre-Layer Normalization (Pre-LN) 架构详解
人工智能
智奇数美20 分钟前
“成本减法”与“效率乘法”——AI智能重构企业通信格局
人工智能·智能手机·信息与通信
技术闲聊DD27 分钟前
机器学习(1)- 机器学习简介
人工智能·机器学习
mwq3012333 分钟前
GPT-2 中的残差权重初始化
人工智能
mwq301231 小时前
Transformer : 深度神经网络中的残差连接 (Residual Connection)
人工智能
信田君95271 小时前
瑞莎星瑞(Radxa Orion O6) 基于 Android OS 使用 NPU的图片模糊查找APP 开发
android·人工智能·深度学习·神经网络
默默coding的程序猿1 小时前
3.git的分支携带问题是什么?怎么解决?
java·git·python·svn·gitee·github·intellij-idea
StarPrayers.1 小时前
卷积神经网络(CNN)入门实践及Sequential 容器封装
人工智能·pytorch·神经网络·cnn
周末程序猿1 小时前
谈谈上下文工程(Context Engineering)
人工智能