基于MySQL实现基础图数据库

基于MySQL实现基础图数据库

一、概念

图数据库是一种用于存储和查询具有复杂关系的数据的数据库。在这种数据库中,数据被表示为节点(实体)和边(关系)。图数据库的核心优势在于能够快速地查询和处理节点之间的关系。

图数据库特点:

  1. 高效处理复杂关系:图数据库擅长处理复杂、多层级的关系,这使得它在社交网络分析、推荐系统等领域具有显著优势。
  2. 灵活的查询语言:图数据库通常使用类似自然语言的查询语言,如Gremlin或Cypher,使得查询过程更加直观。

专业的图数据库,可以存储千万、甚至亿级别的边和节点,详情可参考文章:https://blog.csdn.net/weixin_45565886/article/details/149290447

但并非只有专业的图数据库可以实现图的一些操作,比如:图挖掘,实际也可以通过MySQL来实现。本文主要讲解如何通过MySQL构建图数据存储,当然MySQL构建图结构数据与专业图数据库还是有能力上的差异,比如:图算法需要自己通过SQL实现、整体效率不及专业图数据库等。

二、应用场景

基于MySQL实现图数据库,是通过多表关联来实现操作,因此性能和整体能力肯定不及专业图数据库。

MySQL实现图存储最适合场景:

  1. 中小规模图数据(≤10万节点)
  2. 需要强事务保证的业务系统
  3. 图查询以1-3度关系为主
  4. 已有MySQL基础设施且预算有限

专业图数据库场景:

  1. 大规模图数据(≥100万节点)
  2. 需要复杂图算法(社区发现等)
  3. 深度路径查询(≥4度关系)
  4. 实时图分析需求

三、实现

环境搭建

首先我们需要有MySQL环境,我这里为了方便就直接通过docker搭建MySQL:

bash 复制代码
docker run -d \
  --name mysql8 \
  --restart always \
  -p 3306:3306 \
  -e TZ=Asia/Shanghai \
  -e MYSQL_ROOT_PASSWORD=123456 \
  -v /Users/ziyi2/docker-home/mysql/data:/var/lib/mysql \
  mysql:8.0

存储结构定义

图主要包含节点、边,因此我们这里选择定义两个数据表来实现。同时节点和边都具有很多属性,且为kv对,这里我们就采用MySQL中的JSON格式存储。

sql 复制代码
-- 节点表
CREATE TABLE IF NOT EXISTS node (
    node_id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
    properties JSON COMMENT '节点属性'
);

-- 边表
CREATE TABLE IF NOT EXISTS edge (
    edge_id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
    source_id BIGINT NOT NULL COMMENT '源节点ID',
    target_id BIGINT NOT NULL COMMENT '目标节点ID',
    properties JSON COMMENT '边属性',
    FOREIGN KEY(source_id) REFERENCES node(node_id) ON DELETE CASCADE,
    FOREIGN KEY(target_id) REFERENCES node(node_id) ON DELETE CASCADE
);

-- 索引创建
CREATE INDEX idx_edge_source ON edge(source_id);
CREATE INDEX idx_edge_target ON edge(target_id);

基础功能

创建

节点创建:

sql 复制代码
-- 创建用户节点
INSERT INTO node (properties) VALUES
('{"type": "user", "name": "张三", "age": 28, "interests": ["篮球","音乐"]}'),
('{"type": "user", "name": "李四", "age": 32, "interests": ["电影","美食"]}'),
('{"type": "user", "name": "王五", "age": 27, "interests": ["跑步","美食"]}');

边创建:

sql 复制代码
-- 创建好友关系
INSERT INTO edge (source_id, target_id, properties) VALUES
(1, 3, '{"type": "friend", "since": "2023-01-01"}'),
(2, 3, '{"type": "friend", "since": "2023-01-01"}');
查询
  1. 根据节点属性查询节点
sql 复制代码
SELECT * from node
where properties->>'$.name' = '张三';
  1. 查询某个节点关联的另一个节点
sql 复制代码
-- 查询张三的好友
SELECT n2.node_id, n2.properties->>'$.name' AS friend_name
FROM edge e
JOIN node n1 ON e.source_id = n1.node_id
JOIN node n2 ON e.target_id = n2.node_id
WHERE n1.properties->>'$.name' = '张三'
AND e.properties->>'$.type' = 'friend';
  1. 查询两个节点的公共节点。查询共同好友,因为张三、王五是好友,李四、王五是好友,所以张三跟李四的共同好友就是王五
sql 复制代码
-- 查询共同好友
SELECT n3.properties->>'$.name' AS common_friend
FROM edge e1
JOIN edge e2 ON e1.target_id = e2.target_id
JOIN node n1 ON e1.source_id = n1.node_id
JOIN node n2 ON e2.source_id = n2.node_id
JOIN node n3 ON e1.target_id = n3.node_id
WHERE n1.properties->>'$.name' = '张三'
AND n2.properties->>'$.name' = '李四'
AND e1.properties->>'$.type' = 'friend'
AND e2.properties->>'$.type' = 'friend';
递归

查找某个节点关联的所有节点,类似与Neo4j中的Expand展开。

sql 复制代码
-- 递归查找所有关联节点
WITH RECURSIVE node_path AS (
    SELECT
        source_id,
        target_id,
        properties,
        1 AS depth
    FROM edge
    WHERE source_id = 1

    UNION ALL

    SELECT
        np.source_id,
        e.target_id,
        e.properties,
        np.depth + 1
    FROM node_path np
    JOIN edge e ON np.target_id = e.source_id
    WHERE np.depth < 5 -- 控制最大深度
)
SELECT * FROM node_path;

效果:

更新
sql 复制代码
-- 更新节点已有属性值【更新完之后查询效果】
SELECT * from node
where properties->>'$.name' = '张三';

UPDATE node
SET properties = JSON_SET(properties, '$.age', 29)
WHERE properties->>'$.name' = '张三';

-- 新增节点属性:添加新兴趣
UPDATE node
SET properties = JSON_ARRAY_APPEND(properties, '$.interests', '游泳')
WHERE properties->>'$.name' = '张三';


SELECT * from node
where properties->>'$.name' = '张三';
删除
sql 复制代码
-- 删除关系
DELETE FROM edge 
WHERE source_id = (SELECT node_id FROM node WHERE properties->>'$.name' = '张三')
AND target_id = (SELECT node_id FROM node WHERE properties->>'$.name' = '王五');

-- 删除节点及其关系
DELETE FROM node WHERE properties->>'$.name' = '张三';

下面演示删除关系过程,删除节点同理:

  1. 删除之前
sql 复制代码
select * from edge
WHERE source_id = (SELECT node_id FROM node WHERE properties->>'$.name' = '张三')
AND target_id = (SELECT node_id FROM node WHERE properties->>'$.name' = '王五');
  1. 执行SQL删除后
sql 复制代码
-- 删除关系
DELETE FROM edge 
WHERE source_id = (SELECT node_id FROM node WHERE properties->>'$.name' = '张三')
AND target_id = (SELECT node_id FROM node WHERE properties->>'$.name' = '王五');

图算法实现

1. 度中心性算法

度中心性算法(Degree Centrality)

  • 介绍:中心性是刻画节点中心性的最直接度量指标。节点的度是指一个节点连接的边的数量,一个 节点的度越大就意味着这个节点的度中心性越高,该节点在网络中就越重要。对于有向图,还 要分别考虑出度/入度/出入度。
  • 计算:统计节点连接的边数量。
  • 应用:计算某个领域的KOL关键人物,头部商家、用户、up主...

数据构造:

sql 复制代码
-- 删除之前数据,避免用户数据重复等
DELETE FROM edge;
DELETE FROM node;
ALTER TABLE node AUTO_INCREMENT = 1;
ALTER TABLE edge AUTO_INCREMENT = 1;

-- 创建用户节点
INSERT INTO node (properties) VALUES
('{"type":"user","name":"张三","title":"科技博主"}'),
('{"type":"user","name":"李四","title":"美食达人"}'),
('{"type":"user","name":"王五","title":"旅行摄影师"}'),
('{"type":"user","name":"赵六","title":"投资专家"}'),
('{"type":"user","name":"钱七","title":"健身教练"}'),
('{"type":"user","name":"周八","title":"宠物博主"}'),
('{"type":"user","name":"吴九","title":"历史学者"}');

-- 创建关注关系
INSERT INTO edge (source_id, target_id, properties) VALUES
-- 张三被关注关系
(2,1, '{"type":"follow","timestamp":"2023-01-10"}'),
(3,1, '{"type":"follow","timestamp":"2023-01-12"}'),
(4,1, '{"type":"follow","timestamp":"2023-01-15"}'),
(5,1, '{"type":"follow","timestamp":"2023-01-18"}'),
-- 李四被关注关系
(1,2, '{"type":"follow","timestamp":"2023-01-20"}'),
(3,2, '{"type":"follow","timestamp":"2023-01-22"}'),
(6,2, '{"type":"follow","timestamp":"2023-01-25"}'),
-- 王五被关注关系
(1,3, '{"type":"follow","timestamp":"2023-02-01"}'),
(7,3, '{"type":"follow","timestamp":"2023-02-05"}'),
-- 赵六被关注关系
(4,4, '{"type":"follow","timestamp":"2023-02-10"}'); -- 自关注(特殊情况)

度中心性算法实现:

sql 复制代码
-- 计算用户被关注度(入度中心性)
SELECT 
    n.node_id,
    n.properties->>'$.name' AS user_name,
    n.properties->>'$.title' AS title,
    COUNT(e.edge_id) AS follower_count,
    -- 计算标准化中心性(0-1范围)
    ROUND(COUNT(e.edge_id) / (SELECT COUNT(*)-1 FROM node WHERE properties->>'$.type'='user'), 3) AS normalized_centrality
FROM node n
LEFT JOIN edge e ON n.node_id = e.target_id
AND e.properties->>'$.type' = 'follow'
WHERE n.properties->>'$.type' = 'user'
GROUP BY n.node_id
ORDER BY follower_count DESC;

效果:

2. 相似度算法

图场景中相似度算法主流的主要包含:余弦相似度、杰卡德相似度。这里主要介绍下Jaccard相似度算法。

  • 杰卡德相似度(Jaccard Similarity)
  • 介绍:节点A和节点B的杰卡德相似度定义为,节点A邻居和节点B邻居的交集节点数量除以并集节点 数量。Jaccard系数计算的是两个节点的邻居集合的重合程度,以此来衡量两个节点的相似度。
  • 计算:计算两个节点邻居集合的交集数量和并集数量,然后再相除。公式:|A ∩ B| / (|A| + |B| - |A ∩ B|)
  • 应用:共同好友推荐、电商商品推荐猜你喜欢

数据构造:

sql 复制代码
-- 清理之前数据,避免混淆
DELETE FROM edge;
DELETE FROM node;
ALTER TABLE node AUTO_INCREMENT = 1;
ALTER TABLE edge AUTO_INCREMENT = 1;
-- 创建用户节点(包含风险标记)
INSERT INTO node (properties) VALUES
('{"type":"user","name":"张三","phone":"13800138000","risk_score":5,"register_time":"2023-01-01"}'),
('{"type":"user","name":"李四","phone":"13900139000","risk_score":85,"register_time":"2023-01-05"}'), -- 黑产用户
('{"type":"user","name":"王五","phone":"13700137000","risk_score":92,"register_time":"2023-01-10"}'), -- 黑产用户
('{"type":"user","name":"赵六","phone":"13600136000","risk_score":15,"register_time":"2023-01-15"}'),
('{"type":"user","name":"钱七","phone":"13500135000","risk_score":8,"register_time":"2023-01-20"}'),
('{"type":"user","name":"孙八","phone":"13400134000","risk_score":95,"register_time":"2023-01-25"}'); -- 黑产用户

-- 创建设备节点
INSERT INTO node (properties) VALUES
('{"type":"device","device_id":"D001","model":"iPhone12","os":"iOS14"}'),
('{"type":"device","device_id":"D002","model":"HuaweiP40","os":"Android10"}'),
('{"type":"device","device_id":"D003","model":"Xiaomi11","os":"Android11"}'),
('{"type":"device","device_id":"D004","model":"OPPOReno5","os":"Android11"}');

-- 创建银行卡节点
INSERT INTO node (properties) VALUES
('{"type":"bank_card","card_no":"622588******1234","bank":"招商银行"}'),
('{"type":"bank_card","card_no":"622848******5678","bank":"农业银行"}'),
('{"type":"bank_card","card_no":"622700******9012","bank":"建设银行"}'),
('{"type":"bank_card","card_no":"622262******3456","bank":"交通银行"}');

-- 创建IP地址节点
INSERT INTO node (properties) VALUES
('{"type":"ip","ip_address":"192.168.1.101","location":"广东深圳"}'),
('{"type":"ip","ip_address":"192.168.2.202","location":"浙江杭州"}'),
('{"type":"ip","ip_address":"192.168.3.303","location":"江苏南京"}'),
('{"type":"ip","ip_address":"192.168.4.404","location":"北京朝阳"}');

-- 创建关联关系
INSERT INTO edge (source_id, target_id, properties) VALUES
-- 用户-设备关系
(1,7, '{"type":"use","first_time":"2023-01-01"}'),  -- 张三使用D001
(2,7, '{"type":"use","first_time":"2023-01-05"}'),  -- 李四使用D001
(2,8, '{"type":"use","first_time":"2023-01-06"}'),  -- 李四使用D002
(3,8, '{"type":"use","first_time":"2023-01-10"}'),  -- 王五使用D002
(3,9, '{"type":"use","first_time":"2023-01-11"}'),  -- 王五使用D003
(4,10,'{"type":"use","first_time":"2023-01-15"}'),  -- 赵六使用D004
(5,9, '{"type":"use","first_time":"2023-01-20"}'),  -- 钱七使用D003
(6,7, '{"type":"use","first_time":"2023-01-25"}'),  -- 孙八使用D001

-- 用户-银行卡关系
(1,11, '{"type":"bind","time":"2023-01-02"}'),  -- 张三绑定银行卡1
(2,11, '{"type":"bind","time":"2023-01-05"}'),  -- 李四绑定银行卡1
(2,12, '{"type":"bind","time":"2023-01-07"}'),  -- 李四绑定银行卡2
(3,12, '{"type":"bind","time":"2023-01-11"}'),  -- 王五绑定银行卡2
(3,13, '{"type":"bind","time":"2023-01-12"}'),  -- 王五绑定银行卡3
(4,14, '{"type":"bind","time":"2023-01-16"}'),  -- 赵六绑定银行卡4
(5,13, '{"type":"bind","time":"2023-01-21"}'),  -- 钱七绑定银行卡3
(6,11, '{"type":"bind","time":"2023-01-26"}'),  -- 孙八绑定银行卡1

-- 用户-IP关系
(1,15, '{"type":"login","time":"2023-01-03"}'),  -- 张三登录IP1
(2,15, '{"type":"login","time":"2023-01-05"}'),  -- 李四登录IP1
(2,16, '{"type":"login","time":"2023-01-08"}'),  -- 李四登录IP2
(3,16, '{"type":"login","time":"2023-01-10"}'),  -- 王五登录IP2
(3,17, '{"type":"login","time":"2023-01-13"}'),  -- 王五登录IP3
(4,18, '{"type":"login","time":"2023-01-17"}'),  -- 赵六登录IP4
(5,17, '{"type":"login","time":"2023-01-22"}'),  -- 钱七登录IP3
(6,15, '{"type":"login","time":"2023-01-27"}');  -- 孙八登录IP1

算法实现:

Jaccard相似度数学公式:|A ∩ B| / (|A| + |B| - |A ∩ B|)

sql 复制代码
-- 基于Jaccard相似度的图相似度算法实现
WITH user_entities AS (
    SELECT
        u.node_id AS user_id,
        (
            SELECT JSON_ARRAYAGG(ed.target_id)
            FROM edge ed
            WHERE ed.source_id = u.node_id
            AND ed.properties->>'$.type' = 'use'
            AND ed.target_id IN (SELECT node_id FROM node WHERE properties->>'$.type' = 'device')
        ) AS devices,
        (
            SELECT JSON_ARRAYAGG(ec.target_id)
            FROM edge ec
            WHERE ec.source_id = u.node_id
            AND ec.properties->>'$.type' = 'bind'
            AND ec.target_id IN (SELECT node_id FROM node WHERE properties->>'$.type' = 'bank_card')
        ) AS cards,
        (
            SELECT JSON_ARRAYAGG(ei.target_id)
            FROM edge ei
            WHERE ei.source_id = u.node_id
            AND ei.properties->>'$.type' = 'login'
            AND ei.target_id IN (SELECT node_id FROM node WHERE properties->>'$.type' = 'ip')
        ) AS ips
    FROM node u
    WHERE u.properties->>'$.type' = 'user'
),
-- 已知黑产用户
black_users AS (
    SELECT node_id
    FROM node
    WHERE properties->>'$.type' = 'user'
    AND CAST(properties->>'$.risk_score' AS UNSIGNED) > 80
),
-- 相似度计算
similarity_calc AS (
    SELECT
        u1.user_id AS target_user,
        u2.user_id AS black_user,
        -- 设备相似度 (Jaccard系数): |A ∩ B| / (|A| + |B| - |A ∩ B|)
        CASE
            WHEN u1.devices IS NULL OR u2.devices IS NULL
                 OR JSON_LENGTH(u1.devices) = 0 OR JSON_LENGTH(u2.devices) = 0
            THEN 0
            ELSE (
                -- 分子部分: |A ∩ B| (交集的大小)
                SELECT COUNT(DISTINCT d1.device_id)
                FROM JSON_TABLE(u1.devices, '$[*]' COLUMNS(device_id BIGINT PATH '$')) d1
                INNER JOIN JSON_TABLE(u2.devices, '$[*]' COLUMNS(device_id BIGINT PATH '$')) d2
                ON d1.device_id = d2.device_id
            ) * 1.0 / (
                -- 分母部分: (|A| + |B| - |A ∩ B|) (并集的大小)
                JSON_LENGTH(u1.devices) +                -- |A| 集合A的大小
                JSON_LENGTH(u2.devices) -                -- |B| 集合B的大小
                (
                    -- |A ∩ B| 交集的大小(再次计算用于分母)
                    SELECT COUNT(DISTINCT d1.device_id)
                    FROM JSON_TABLE(u1.devices, '$[*]' COLUMNS(device_id BIGINT PATH '$')) d1
                    INNER JOIN JSON_TABLE(u2.devices, '$[*]' COLUMNS(device_id BIGINT PATH '$')) d2
                    ON d1.device_id = d2.device_id
                )
            )
        END AS device_sim,

        -- 银行卡相似度 (Jaccard系数): |A ∩ B| / (|A| + |B| - |A ∩ B|)
        CASE
            WHEN u1.cards IS NULL OR u2.cards IS NULL
                 OR JSON_LENGTH(u1.cards) = 0 OR JSON_LENGTH(u2.cards) = 0
            THEN 0
            ELSE (
                -- 分子部分: |A ∩ B| (交集的大小)
                SELECT COUNT(DISTINCT c1.card_id)
                FROM JSON_TABLE(u1.cards, '$[*]' COLUMNS(card_id BIGINT PATH '$')) c1
                INNER JOIN JSON_TABLE(u2.cards, '$[*]' COLUMNS(card_id BIGINT PATH '$')) c2
                ON c1.card_id = c2.card_id
            ) * 1.0 / (
                -- 分母部分: (|A| + |B| - |A ∩ B|) (并集的大小)
                JSON_LENGTH(u1.cards) +                  -- |A| 集合A的大小
                JSON_LENGTH(u2.cards) -                  -- |B| 集合B的大小
                (
                    -- |A ∩ B| 交集的大小(再次计算用于分母)
                    SELECT COUNT(DISTINCT c1.card_id)
                    FROM JSON_TABLE(u1.cards, '$[*]' COLUMNS(card_id BIGINT PATH '$')) c1
                    INNER JOIN JSON_TABLE(u2.cards, '$[*]' COLUMNS(card_id BIGINT PATH '$')) c2
                    ON c1.card_id = c2.card_id
                )
            )
        END AS card_sim,

        -- IP相似度 (Jaccard系数): |A ∩ B| / (|A| + |B| - |A ∩ B|)
        CASE
            WHEN u1.ips IS NULL OR u2.ips IS NULL
                 OR JSON_LENGTH(u1.ips) = 0 OR JSON_LENGTH(u2.ips) = 0
            THEN 0
            ELSE (
                -- 分子部分: |A ∩ B| (交集的大小)
                SELECT COUNT(DISTINCT i1.ip_id)
                FROM JSON_TABLE(u1.ips, '$[*]' COLUMNS(ip_id BIGINT PATH '$')) i1
                INNER JOIN JSON_TABLE(u2.ips, '$[*]' COLUMNS(ip_id BIGINT PATH '$')) i2
                ON i1.ip_id = i2.ip_id
            ) * 1.0 / (
                -- 分母部分: (|A| + |B| - |A ∩ B|) (并集的大小)
                JSON_LENGTH(u1.ips) +                    -- |A| 集合A的大小
                JSON_LENGTH(u2.ips) -                    -- |B| 集合B的大小
                (
                    -- |A ∩ B| 交集的大小(再次计算用于分母)
                    SELECT COUNT(DISTINCT i1.ip_id)
                    FROM JSON_TABLE(u1.ips, '$[*]' COLUMNS(ip_id BIGINT PATH '$')) i1
                    INNER JOIN JSON_TABLE(u2.ips, '$[*]' COLUMNS(ip_id BIGINT PATH '$')) i2
                    ON i1.ip_id = i2.ip_id
                )
            )
        END AS ip_sim

    FROM user_entities u1
    JOIN user_entities u2 ON u2.user_id IN (SELECT node_id FROM black_users)
    WHERE u1.user_id NOT IN (SELECT node_id FROM black_users)  -- 排除已知黑产
)
-- 最终结果查询
SELECT
    u.properties->>'$.name' AS target_user,
    u.properties->>'$.phone' AS phone,
    CAST(u.properties->>'$.risk_score' AS UNSIGNED) AS risk_score,
    bu.properties->>'$.name' AS black_user,
    ROUND(sc.device_sim, 3) AS device_similarity,
    ROUND(sc.card_sim, 3) AS card_similarity,
    ROUND(sc.ip_sim, 3) AS ip_similarity,
    ROUND((sc.device_sim * 0.5 + sc.card_sim * 0.3 + sc.ip_sim * 0.2), 3) AS total_similarity,
    CASE
        WHEN (sc.device_sim * 0.5 + sc.card_sim * 0.3 + sc.ip_sim * 0.2) > 0.7 THEN '高风险'
        WHEN (sc.device_sim * 0.5 + sc.card_sim * 0.3 + sc.ip_sim * 0.2) > 0.4 THEN '中风险'
        ELSE '低风险'
    END AS risk_level
FROM similarity_calc sc
JOIN node u ON sc.target_user = u.node_id
JOIN node bu ON sc.black_user = bu.node_id
ORDER BY total_similarity DESC
LIMIT 5;

效果:

四、项目实战

基于MySQL搭建的图数据库,模拟实现好友推荐功能。

  1. 数据准备:
sql 复制代码
-- 创建用户
INSERT INTO node (properties) VALUES
('{"type":"user","name":"张三","age":25,"city":"北京"}'),
('{"type":"user","name":"李四","age":28,"city":"北京"}'),
('{"type":"user","name":"王五","age":30,"city":"上海"}'),
('{"type":"user","name":"赵六","age":26,"city":"广州"}'),
('{"type":"user","name":"钱七","age":27,"city":"深圳"}'),
('{"type":"user","name":"Jack","age":18,"city":"杭州"}'),
('{"type":"user","name":"Tom","age":45,"city":"贵州"}'),
('{"type":"user","name":"Mike","age":35,"city":"上海"}');

-- 创建好友关系
INSERT INTO edge (source_id, target_id, properties) VALUES
(1,2, '{"type":"friend"}'),
(1,3, '{"type":"friend"}'),
(2,4, '{"type":"friend"}'),
(3,5, '{"type":"friend"}'),
(4,5, '{"type":"friend"}'),
(6,7, '{"type":"friend"}'),
(7,8, '{"type":"friend"}');
  1. 具体实现
sql 复制代码
-- 综合推荐算法:为张三推荐3个好友,排除现有好友
WITH target_user AS (
    SELECT
        node_id,
        properties->>'$.city' AS city
    FROM node
    WHERE properties->>'$.name' = '张三'
),
existing_friends AS (
    SELECT target_id
    FROM edge
    WHERE source_id = (SELECT node_id FROM target_user)
    AND properties->>'$.type' = 'friend'
),
common_friends AS (
    SELECT
        f2.target_id AS candidate_id,
        COUNT(*) AS common_friend_count
    FROM edge f1
    JOIN edge f2 ON f1.target_id = f2.source_id
    WHERE f1.source_id = (SELECT node_id FROM target_user)
    AND f2.target_id NOT IN (SELECT target_id FROM existing_friends)  -- 排除现有好友
    AND f2.target_id != (SELECT node_id FROM target_user)  -- 排除自己
    AND f1.properties->>'$.type' = 'friend'
    AND f2.properties->>'$.type' = 'friend'
    GROUP BY f2.target_id
),
same_city AS (
    SELECT
        n.node_id AS candidate_id,
        1 AS same_city_score
    FROM node n
    WHERE n.properties->>'$.city' = (SELECT city FROM target_user)
    AND n.node_id != (SELECT node_id FROM target_user)
    AND n.node_id NOT IN (SELECT target_id FROM existing_friends)  -- 排除现有好友
),
final_candidates AS (
    SELECT
        cf.candidate_id,
        COALESCE(cf.common_friend_count, 0) AS common_friends,
        COALESCE(sc.same_city_score, 0) AS same_city,
        COALESCE(cf.common_friend_count, 0) * 0.6 +
        COALESCE(sc.same_city_score, 0) * 0.4 AS recommendation_score
    FROM common_friends cf
    LEFT JOIN same_city sc ON cf.candidate_id = sc.candidate_id

    UNION ALL

    SELECT
        sc.candidate_id,
        0 AS common_friends,
        sc.same_city_score AS same_city,
        sc.same_city_score * 0.4 AS recommendation_score
    FROM same_city sc
    WHERE sc.candidate_id NOT IN (SELECT candidate_id FROM common_friends)
)
SELECT
    n.properties->>'$.name' AS recommended_name,
    fc.common_friends,
    fc.same_city,
    fc.recommendation_score
FROM final_candidates fc
JOIN node n ON fc.candidate_id = n.node_id
ORDER BY recommendation_score DESC
LIMIT 3;
  1. 效果展示

可以看到最后只给张三推荐了赵六和钱七,并没有推荐Tom、Jack等用户。

相关推荐
Albert Tan17 分钟前
ORACLE DATABASE 23AI+Apex+ORDS -纯享版
数据库·oracle
程序员编程指南24 分钟前
Qt OpenGL 集成:开发 3D 图形应用
c语言·数据库·c++·qt·3d
婪苏(Python学习ing)2 小时前
MySQL 与 Redis 基础入门:从安装到核心操作
数据库
钱彬 (Qian Bin)2 小时前
《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——6. 传统算法实战:用OpenCV测量螺丝尺寸
教程·cmake·qml·qt quick·工业软件·工业瑕疵检测·qt6.9.1
幻灭行度2 小时前
通过redis_exporter监控redis cluster
数据库·redis·缓存
Wang's Blog2 小时前
Nestjs框架: 基于Mongodb的多租户功能集成和优化
数据库·mongodb·多租户
Edingbrugh.南空3 小时前
Aerospike架构深度解析:打造web级分布式应用的理想数据库
数据库·架构
技术卷4 小时前
详解力扣高频SQL50题之1084. 销售分析 III【简单】
sql·leetcode·oracle
Cxzzzzzzzzzz4 小时前
数据库索引详解:原理、设计原则与应用场景
数据库·mysql
Alla T5 小时前
【通识】数据库
数据库·oracle