Instruction Tuning for Large Language Models: A Survey

本文是LLM系列文章,针对《Instruction Tuning for Large Language Models: A Survey》的翻译。

大语言模型指令调整:综述

  • 摘要
  • [1 引言](#1 引言)
  • [2 方法](#2 方法)
  • [3 数据集](#3 数据集)
  • [4 指令微调LLMs](#4 指令微调LLMs)
  • [5 多模态指令微调](#5 多模态指令微调)
  • [6 特定领域指令微调](#6 特定领域指令微调)
  • [7 高效调整技术](#7 高效调整技术)
  • [8 评估,分析和批评](#8 评估,分析和批评)
  • [9 结论](#9 结论)

摘要

本文综述了快速发展的指令调整(IT)领域的研究工作,这是提高大型语言模型(LLM)能力和可控性的关键技术。指令调整是指以监督的方式在由(Instruction,OUTPUT)对组成的数据集上进一步训练LLM的过程,它弥合了LLM的下一个单词预测目标和用户让LLM遵守人类指令的目标之间的差距。在这项工作中,我们对文献进行了系统的回顾,包括指令调整的一般方法、指令调整数据集的构建、指令调整模型的训练以及对不同模式、领域和应用的应用,以及对影响指令调整结果的方面的分析(例如,指令输出的生成、指令数据集的大小等)。我们还回顾了IT的潜在陷阱以及对它的批评,同时指出了现有策略的当前不足,并提出了一些富有成效的研究途径。

1 引言

2 方法

3 数据集

4 指令微调LLMs

5 多模态指令微调

6 特定领域指令微调

7 高效调整技术

8 评估,分析和批评

9 结论

这项工作调查了快速增长的指令调整领域的最新进展。我们对文献进行了系统的回顾,包括指令调整的一般方法、指令调整数据集的构建、指令调整模型的训练、指令调整在不同模式、领域和应用中的应用。我们还回顾了对IT模型的分析,以发现它们的优势和潜在的陷阱。我们希望这项工作将起到激励作用,进一步努力解决当前IT模型的不足。

相关推荐
摘星编程2 小时前
RAG重塑搜索:如何用检索增强生成打造企业级AI问答系统
人工智能
啊阿狸不会拉杆2 小时前
《机器学习导论》第 9 章-决策树
人工智能·python·算法·决策树·机器学习·数据挖掘·剪枝
曦月逸霜2 小时前
机器学习——个人笔记(持续更新中~)
人工智能·机器学习
新缸中之脑2 小时前
30个最好的3D相关AI代理技能
人工智能·3d
Pyeako2 小时前
opencv计算机视觉--LBPH&EigenFace&FisherFace人脸识别
人工智能·python·opencv·计算机视觉·lbph·eigenface·fisherface
工程师老罗2 小时前
举例说明YOLOv1 输出坐标到原图像素的映射关系
人工智能·yolo·计算机视觉
猫头虎2 小时前
手动部署开源OpenClaw汉化中文版过程中常见问题排查手册
人工智能·langchain·开源·github·aigc·agi·openclaw
多恩Stone2 小时前
【3D AICG 系列-9】Trellis2 推理流程图超详细介绍
人工智能·python·算法·3d·aigc·流程图
整得咔咔响2 小时前
贝尔曼最优公式(BOE)
人工智能·算法·机器学习
2501_946961472 小时前
极简大气创业融资 PPT 模板,适合路演、项目宣讲
人工智能·排序算法