Instruction Tuning for Large Language Models: A Survey

本文是LLM系列文章,针对《Instruction Tuning for Large Language Models: A Survey》的翻译。

大语言模型指令调整:综述

  • 摘要
  • [1 引言](#1 引言)
  • [2 方法](#2 方法)
  • [3 数据集](#3 数据集)
  • [4 指令微调LLMs](#4 指令微调LLMs)
  • [5 多模态指令微调](#5 多模态指令微调)
  • [6 特定领域指令微调](#6 特定领域指令微调)
  • [7 高效调整技术](#7 高效调整技术)
  • [8 评估,分析和批评](#8 评估,分析和批评)
  • [9 结论](#9 结论)

摘要

本文综述了快速发展的指令调整(IT)领域的研究工作,这是提高大型语言模型(LLM)能力和可控性的关键技术。指令调整是指以监督的方式在由(Instruction,OUTPUT)对组成的数据集上进一步训练LLM的过程,它弥合了LLM的下一个单词预测目标和用户让LLM遵守人类指令的目标之间的差距。在这项工作中,我们对文献进行了系统的回顾,包括指令调整的一般方法、指令调整数据集的构建、指令调整模型的训练以及对不同模式、领域和应用的应用,以及对影响指令调整结果的方面的分析(例如,指令输出的生成、指令数据集的大小等)。我们还回顾了IT的潜在陷阱以及对它的批评,同时指出了现有策略的当前不足,并提出了一些富有成效的研究途径。

1 引言

2 方法

3 数据集

4 指令微调LLMs

5 多模态指令微调

6 特定领域指令微调

7 高效调整技术

8 评估,分析和批评

9 结论

这项工作调查了快速增长的指令调整领域的最新进展。我们对文献进行了系统的回顾,包括指令调整的一般方法、指令调整数据集的构建、指令调整模型的训练、指令调整在不同模式、领域和应用中的应用。我们还回顾了对IT模型的分析,以发现它们的优势和潜在的陷阱。我们希望这项工作将起到激励作用,进一步努力解决当前IT模型的不足。

相关推荐
业精于勤的牙5 分钟前
浅谈:算法中的斐波那契数(六)
人工智能·算法
七夜zippoe7 分钟前
NPU存储体系 数据在芯片内的旅程与分层优化策略
人工智能·昇腾·cann·ascend c·l1 buffer
IT_陈寒13 分钟前
JavaScript性能优化:5个V8引擎隐藏技巧让你的代码提速50%
前端·人工智能·后端
AI架构师易筋13 分钟前
模型上下文协议(MCP)完全指南:从AI代理痛点到实战开发
人工智能·microsoft·语言模型·llm·mcp
Robot侠16 分钟前
视觉语言导航从入门到精通(二)
开发语言·人工智能·python·llm·vln
qdprobot16 分钟前
齐护AiTall pro ESP32S3 小智AI对话 MQTT MCP 开发板Mixly Scratch Steam图形化编程创客教育
人工智能·mqtt·scratch·mixly·mcp·小智ai·齐护机器人aitall pro
程砚成16 分钟前
美容行业的未来:当科技照进美与健康
大数据·人工智能
AI科技星19 分钟前
质量定义方程的物理数学融合与求导验证
数据结构·人工智能·算法·机器学习·重构
javaforever_cn23 分钟前
AI Agent 智能体与MCP开发实践-基于Qwen3大模型-王晓华 案例实战 第二章
人工智能
deephub23 分钟前
llama.cpp Server 引入路由模式:多模型热切换与进程隔离机制详解
人工智能·python·深度学习·llama