Python 带参数的装饰器

首先我们定义一个可以打印日志的装饰器:

python 复制代码
def log(func):
    def wrapper(*args, **kwargs):
        print('call %s():' % func.__name__)
        return func(*args, **kw)
    return wrapper

它接受一个函数作为输入,再返回一个函数。我们使用一下这个装饰器

python 复制代码
@log
def now():
    print('2023-8-31')

我们调用一下now函数,它不仅打印当前时间,还会在前面打印一行日志:

@log放到now()函数定义处,相当于执行下列语句:

python 复制代码
now = log(now)

假如我们的装饰器需要传递参数,那么我们需要再把装饰器包起来,俗称套娃

python 复制代码
def log(text):
    def decorator(func):
        def wrapper(*args, **kwargs):
            print('%s %s():' % (text, func.__name__))
            return func(*args, **kwargs)
        return wrapper
    return decorator

我们用一下这个装饰器:

python 复制代码
@log('装饰器参数')
def now():
    print('2023-8-31')

执行

上面装饰器等同于

python 复制代码
now = log('装饰器参数')(now)

log('装饰器参数')返回函数decoratordecorator(now)返回函数wrapper

附录

我在看 lite transformer 的代码的时候发现了一个装饰器:

python 复制代码
def register_model(name):
    """
    New model types can be added to fairseq with the :func:`register_model`
    function decorator.

    For example::

        @register_model('lstm')
        class LSTM(FairseqEncoderDecoderModel):
            (...)

    .. note:: All models must implement the :class:`BaseFairseqModel` interface.
        Typically you will extend :class:`FairseqEncoderDecoderModel` for
        sequence-to-sequence tasks or :class:`FairseqLanguageModel` for
        language modeling tasks.

    Args:
        name (str): the name of the model
    """

    def register_model_cls(cls):
    	#如果函数名字登记过了,报错
        if name in MODEL_REGISTRY:
            raise ValueError('Cannot register duplicate model ({})'.format(name))
        #如果函数不是BaseFairseqModel的子类,报错
        if not issubclass(cls, BaseFairseqModel):
            raise ValueError('Model ({}: {}) must extend BaseFairseqModel'.format(name, cls.__name__))
        #登记一下新函数的名字
        MODEL_REGISTRY[name] = cls
        return cls

    return register_model_cls

可以看到它只有两层,register_model(name)对标上面的log(text)register_model_cls对标上面的decorator,它把一个函数cls传进来,登记一下,再把函数cls传出去,没有wrapper。看一下它是怎么调用的:

python 复制代码
@register_model('transformer_multibranch_v2')
class TransformerMultibranchModel(FairseqEncoderDecoderModel):
    """
    Transformer model from `"Attention Is All You Need" (Vaswani, et al, 2017)
    <https://arxiv.org/abs/1706.03762>`_.

    Args:
        encoder (TransformerEncoder): the encoder
        decoder (TransformerDecoder): the decoder

    The Transformer model provides the following named architectures and
    command-line arguments:

    .. argparse::
        :ref: fairseq.models.transformer_parser
        :prog:
    """

在这里,他把新定义的函数TransformerMultibranchModel作为参数cls传进去登记,给它取名nametransformer_multibranch_v2

相关推荐
冷雨夜中漫步8 小时前
Python快速入门(6)——for/if/while语句
开发语言·经验分享·笔记·python
郝学胜-神的一滴8 小时前
深入解析Python字典的继承关系:从abc模块看设计之美
网络·数据结构·python·程序人生
百锦再8 小时前
Reactive编程入门:Project Reactor 深度指南
前端·javascript·python·react.js·django·前端框架·reactjs
喵手10 小时前
Python爬虫实战:旅游数据采集实战 - 携程&去哪儿酒店机票价格监控完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集结果csv导出·旅游数据采集·携程/去哪儿酒店机票价格监控
2501_9449347310 小时前
高职大数据技术专业,CDA和Python认证优先考哪个?
大数据·开发语言·python
helloworldandy10 小时前
使用Pandas进行数据分析:从数据清洗到可视化
jvm·数据库·python
2的n次方_11 小时前
CANN ascend-transformer-boost 架构解析:融合注意力算子管线、长序列分块策略与图引擎协同机制
深度学习·架构·transformer
人工智能培训11 小时前
具身智能视觉、触觉、力觉、听觉等信息如何实时对齐与融合?
人工智能·深度学习·大模型·transformer·企业数字化转型·具身智能
肖永威11 小时前
macOS环境安装/卸载python实践笔记
笔记·python·macos
TechWJ11 小时前
PyPTO编程范式深度解读:让NPU开发像写Python一样简单
开发语言·python·cann·pypto