Python 带参数的装饰器

首先我们定义一个可以打印日志的装饰器:

python 复制代码
def log(func):
    def wrapper(*args, **kwargs):
        print('call %s():' % func.__name__)
        return func(*args, **kw)
    return wrapper

它接受一个函数作为输入,再返回一个函数。我们使用一下这个装饰器

python 复制代码
@log
def now():
    print('2023-8-31')

我们调用一下now函数,它不仅打印当前时间,还会在前面打印一行日志:

@log放到now()函数定义处,相当于执行下列语句:

python 复制代码
now = log(now)

假如我们的装饰器需要传递参数,那么我们需要再把装饰器包起来,俗称套娃

python 复制代码
def log(text):
    def decorator(func):
        def wrapper(*args, **kwargs):
            print('%s %s():' % (text, func.__name__))
            return func(*args, **kwargs)
        return wrapper
    return decorator

我们用一下这个装饰器:

python 复制代码
@log('装饰器参数')
def now():
    print('2023-8-31')

执行

上面装饰器等同于

python 复制代码
now = log('装饰器参数')(now)

log('装饰器参数')返回函数decoratordecorator(now)返回函数wrapper

附录

我在看 lite transformer 的代码的时候发现了一个装饰器:

python 复制代码
def register_model(name):
    """
    New model types can be added to fairseq with the :func:`register_model`
    function decorator.

    For example::

        @register_model('lstm')
        class LSTM(FairseqEncoderDecoderModel):
            (...)

    .. note:: All models must implement the :class:`BaseFairseqModel` interface.
        Typically you will extend :class:`FairseqEncoderDecoderModel` for
        sequence-to-sequence tasks or :class:`FairseqLanguageModel` for
        language modeling tasks.

    Args:
        name (str): the name of the model
    """

    def register_model_cls(cls):
    	#如果函数名字登记过了,报错
        if name in MODEL_REGISTRY:
            raise ValueError('Cannot register duplicate model ({})'.format(name))
        #如果函数不是BaseFairseqModel的子类,报错
        if not issubclass(cls, BaseFairseqModel):
            raise ValueError('Model ({}: {}) must extend BaseFairseqModel'.format(name, cls.__name__))
        #登记一下新函数的名字
        MODEL_REGISTRY[name] = cls
        return cls

    return register_model_cls

可以看到它只有两层,register_model(name)对标上面的log(text)register_model_cls对标上面的decorator,它把一个函数cls传进来,登记一下,再把函数cls传出去,没有wrapper。看一下它是怎么调用的:

python 复制代码
@register_model('transformer_multibranch_v2')
class TransformerMultibranchModel(FairseqEncoderDecoderModel):
    """
    Transformer model from `"Attention Is All You Need" (Vaswani, et al, 2017)
    <https://arxiv.org/abs/1706.03762>`_.

    Args:
        encoder (TransformerEncoder): the encoder
        decoder (TransformerDecoder): the decoder

    The Transformer model provides the following named architectures and
    command-line arguments:

    .. argparse::
        :ref: fairseq.models.transformer_parser
        :prog:
    """

在这里,他把新定义的函数TransformerMultibranchModel作为参数cls传进去登记,给它取名nametransformer_multibranch_v2

相关推荐
Swizard5 分钟前
告别“意大利面条”:FastAPI 生产级架构的最佳实践指南
python·fastapi
不惑_11 分钟前
通俗理解卷积神经网络
人工智能·windows·python·深度学习·机器学习
滴啦嘟啦哒19 分钟前
【机械臂】【总览】基于VLA结构的指令驱动式机械臂
python·ros2·vla
写代码的【黑咖啡】30 分钟前
深入理解 Python 中的函数
开发语言·python
梦帮科技31 分钟前
量子计算+AI:下一代智能的终极形态?(第一部分)
人工智能·python·神经网络·深度优先·量子计算·模拟退火算法
小兔崽子去哪了34 分钟前
机器学习 线性回归
后端·python·机器学习
山海青风37 分钟前
藏文TTS介绍:6 MMS 项目的多语言 TTS
人工智能·python·神经网络·音视频
掘金詹姆斯38 分钟前
1、为什么说精通 Python 就等于握住了 AI 时代的全栈通行证?
python
用户83562907805138 分钟前
Python 操作 Excel:从基础公式到动态函数生成
后端·python
武当王丶也42 分钟前
从零构建基于 RAG 的 AI 对话系统:Ollama + Python + 知识库实战
人工智能·python