ChatGPT Prompting开发实战(四)

一、chaining prompts应用解析及输出文本的设定

由于输入和输出都是字符串形式的自然语言,为了方便输入和输出信息与系统设定使用的JSON格式之间进行转换,接下来定义从输入字符串转为JSON list的方法:

定义从JSON list转为输出字符串的方法,根据产品和类别输出从系统设定中查到的信息:

接下来设定当用户基于具体产品信息进行查询时,系统应该以什么样的方式回复结果给用户,在编写prompt中的文本时,需要注意不要有多余的信息,因为LLM对文本比较敏感,如果你在文本设定时说了多余的话,那这些多余的话会让LLM感到"困惑",从而影响到LLM给用户的回复信息,以下是一个设定的样例,说明一是需要给出精确的答案,二是注意回复的语调:

二、检查LLM输出的内容是否可能包含有害的内容

当用户与LLM进行交互时,有可能LLM会输出一些有害的内容,所以需要进行检查,下面给出一个LLM给用户的回复示例,通过调用API来检查这段回复是否包含有害的内容:

调用API之后返回结果如下,内容可以归纳为以下3点:

-首先针对有害分类进行识别,结果都为false

-对每个有害分类给出打分结果

-给出综合评定:"flagged": false

{

"categories": {

"hate": false,

"hate/threatening": false,

"self-harm": false,

"sexual": false,

"sexual/minors": false,

"violence": false,

"violence/graphic": false

},

"category_scores": {

"hate": 4.2486073e-07,

"hate/threatening": 5.676476e-10,

"self-harm": 2.9144967e-10,

"sexual": 2.2432391e-06,

"sexual/minors": 1.2526144e-08,

"violence": 5.949349e-06,

"violence/graphic": 4.4063694e-07

},

"flagged": false

}

三、如何使用prompt检查LLM输出是否符合系统设定

以下是LLM针对用户提问回复给用户的信息,总体看来就是一些有关产品参数的信息,没有看到有多余的信息:

The SmartX ProPhone has a 6.1-inch display, 128GB storage, 12MP dual camera, and 5G. The FotoSnap DSLR Camera has a 24.2MP sensor, 1080p video, 3-inch LCD, and interchangeable lenses. We have a variety of TVs, including the CineView 4K TV with a 55-inch display, 4K resolution, HDR, and smart TV features. We also have the SoundMax Home Theater system with 5.1 channel, 1000W output, wireless subwoofer, and Bluetooth. Do you have any specific questions about these products or any other products we offer?

接下来针对上面的输出内容使用下面设定的prompt来检查LLM给出的回复是否是基于系统设定的产品内容来给出的:

输出结果是"Y",但是如果使用下面这个例子中的LLM的输出进行检测,那么结果显然是不符合期望的:

相关推荐
美人鱼战士爱学习5 分钟前
2025 AAAI HLMEA: Unsupervised Entity Alignment Based on Hybrid Language Models
chatgpt·知识图谱
算家计算26 分钟前
Wan2.2-Animate-14B 使用指南:从图片到动画的完整教程
人工智能·开源·aigc
西柚小萌新27 分钟前
【深入浅出PyTorch】--4.PyTorch基础实战
人工智能·pytorch·python
渡我白衣32 分钟前
深度学习入门(一)——从神经元到损失函数,一步步理解前向传播(下)
人工智能·深度学习·神经网络
算家计算1 小时前
快手新模型登顶开源编程模型榜首!超越Qwen3-Coder等模型
人工智能·开源·资讯
ManageEngineITSM1 小时前
IT 服务自动化的时代:让效率与体验共进
运维·数据库·人工智能·自动化·itsm·工单系统
总有刁民想爱朕ha1 小时前
AI大模型学习(17)python-flask AI大模型和图片处理工具的从一张图到多平台适配的简单方法
人工智能·python·学习·电商图片处理
302AI2 小时前
体验升级而非颠覆,API成本直降75%:DeepSeek-V3.2-Exp评测
人工智能·llm·deepseek
新智元2 小时前
老黄押宝「美版 DeepSeek」!谷歌天才叛将创业,一夜吸金 20 亿美元
人工智能·openai
新智元2 小时前
刚刚,全球首个 GB300 巨兽救场!一年烧光 70 亿,OpenAI 内斗 GPU 惨烈
人工智能·openai