【LeetCode题目详解】第九章 动态规划part03 343. 整数拆分 96.不同的二叉搜索树 (day41补)

本文章代码以c++为例!

一、力扣第343题:整数拆分

题目:

给定一个正整数 n ,将其拆分为 k正整数 的和( k >= 2 ),并使这些整数的乘积最大化。

返回 你可以获得的最大乘积

示例 1:

复制代码
输入: n = 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。

示例 2:

复制代码
输入: n = 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。

提示:

  • 2 <= n <= 58

思路

看到这道题目,都会想拆成两个呢,还是三个呢,还是四个....

我们来看一下如何使用动规来解决。

# 动态规划

动规五部曲,分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i]:分拆数字i,可以得到的最大乘积为dp[i]。

dp[i]的定义将贯彻整个解题过程,下面哪一步想不懂了,就想想dp[i]究竟表示的是啥!

  1. 确定递推公式

可以想 dp[i]最大乘积是怎么得到的呢?

其实可以从1遍历j,然后有两种渠道得到dp[i].

一个是j * (i - j) 直接相乘。

一个是j * dp[i - j],相当于是拆分(i - j),对这个拆分不理解的话,可以回想dp数组的定义。

那有同学问了,j怎么就不拆分呢?

j是从1开始遍历,拆分j的情况,在遍历j的过程中其实都计算过了。那么从1遍历j,比较(i - j) * j和dp[i - j] * j 取最大的。递推公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

也可以这么理解,j * (i - j) 是单纯的把整数拆分为两个数相乘,而j * dp[i - j]是拆分成两个以及两个以上的个数相乘。

如果定义dp[i - j] * dp[j] 也是默认将一个数强制拆成4份以及4份以上了。

所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});

那么在取最大值的时候,为什么还要比较dp[i]呢?

因为在递推公式推导的过程中,每次计算dp[i],取最大的而已。

  1. dp的初始化

不少同学应该疑惑,dp[0] dp[1]应该初始化多少呢?

有的题解里会给出dp[0] = 1,dp[1] = 1的初始化,但解释比较牵强,主要还是因为这么初始化可以把题目过了。

严格从dp[i]的定义来说,dp[0] dp[1] 就不应该初始化,也就是没有意义的数值。

拆分0和拆分1的最大乘积是多少?

这是无解的。

这里我只初始化dp[2] = 1,从dp[i]的定义来说,拆分数字2,得到的最大乘积是1,这个没有任何异议!

  1. 确定遍历顺序

确定遍历顺序,先来看看递归公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

dp[i] 是依靠 dp[i - j]的状态,所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。

所以遍历顺序为:

cpp 复制代码
for (int i = 3; i <= n ; i++) {
    for (int j = 1; j < i - 1; j++) {
        dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
    }
}

注意 枚举j的时候,是从1开始的。从0开始的话,那么让拆分一个数拆个0,求最大乘积就没有意义了。

j的结束条件是 j < i - 1 ,其实 j < i 也是可以的,不过可以节省一步,例如让j = i - 1,的话,其实在 j = 1的时候,这一步就已经拆出来了,重复计算,所以 j < i - 1

至于 i是从3开始,这样dp[i - j]就是dp[2]正好可以通过我们初始化的数值求出来。

更优化一步,可以这样:

cpp 复制代码
for (int i = 3; i <= n ; i++) {
    for (int j = 1; j <= i / 2; j++) {
        dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
    }
}

因为拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的。

例如 6 拆成 3 * 3, 10 拆成 3 * 3 * 4。 100的话 也是拆成m个近似数组的子数 相乘才是最大的。

只不过我们不知道m究竟是多少而已,但可以明确的是m一定大于等于2,既然m大于等于2,也就是 最差也应该是拆成两个相同的 可能是最大值。

那么 j 遍历,只需要遍历到 n/2 就可以,后面就没有必要遍历了,一定不是最大值。

至于 "拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的" 这个我就不去做数学证明了,感兴趣的同学,可以自己证明。

  1. 举例推导dp数组

举例当n为10 的时候,dp数组里的数值,如下:

以上动规五部曲分析完毕,C++代码如下:

cpp 复制代码
class Solution {
public:
    int integerBreak(int n) {
        vector<int> dp(n + 1);
        dp[2] = 1;
        for (int i = 3; i <= n ; i++) {
            for (int j = 1; j <= i / 2; j++) {
                dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
            }
        }
        return dp[n];
    }
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n)

# 贪心

本题也可以用贪心,每次拆成n个3,如果剩下是4,则保留4,然后相乘,但是这个结论需要数学证明其合理性!

我没有证明,而是直接用了结论。感兴趣的同学可以自己再去研究研究数学证明哈。

给出我的C++代码如下:

cpp 复制代码
class Solution {
public:
    int integerBreak(int n) {
        if (n == 2) return 1;
        if (n == 3) return 2;
        if (n == 4) return 4;
        int result = 1;
        while (n > 4) {
            result *= 3;
            n -= 3;
        }
        result *= n;
        return result;
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

# 总结

本题掌握其动规的方法,就可以了,贪心的解法确实简单,但需要有数学证明,如果能自圆其说也是可以的。

其实这道题目的递推公式并不好想,而且初始化的地方也很有讲究,我在写本题的时候一开始写的代码是这样的:

cpp 复制代码
class Solution {
public:
    int integerBreak(int n) {
        if (n <= 3) return 1 * (n - 1);
        vector<int> dp(n + 1, 0);
        dp[1] = 1;
        dp[2] = 2;
        dp[3] = 3;
        for (int i = 4; i <= n ; i++) {
            for (int j = 1; j <= i / 2; j++) {
                dp[i] = max(dp[i], dp[i - j] * dp[j]);
            }
        }
        return dp[n];
    }
};

这个代码也是可以过的!

在解释递推公式的时候,也可以解释通,dp[i] 就等于 拆解i - j的最大乘积 * 拆解j的最大乘积。 看起来没毛病!

但是在解释初始化的时候,就发现自相矛盾了,dp[1]为什么一定是1呢?根据dp[i]的定义,dp[2]也不应该是2啊。

但如果递归公式是 dp[i] = max(dp[i], dp[i - j] * dp[j]);,就一定要这么初始化。递推公式没毛病,但初始化解释不通!

虽然代码在初始位置有一个判断if (n <= 3) return 1 * (n - 1);,保证n<=3 结果是正确的,但代码后面又要给dp[1]赋值1 和 dp[2] 赋值 2,这其实就是自相矛盾的代码,违背了dp[i]的定义!

我举这个例子,其实就说做题的严谨性,上面这个代码也可以AC,大体上一看好像也没有毛病,递推公式也说得过去,但是仅仅是恰巧过了而已。

二、力扣第98题:不同的二叉搜索树

题目:

给你一个整数 n ,求恰由 n 个节点组成且节点值从 1n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。

示例 1:

复制代码
输入:n = 3
输出:5

示例 2:

复制代码
输入:n = 1
输出:1

提示:

  • 1 <= n <= 19

思路

这道题目描述很简短,但估计大部分同学看完都是懵懵的状态,这得怎么统计呢?

关于什么是二叉搜索树,我们之前在讲解二叉树专题的时候已经详细讲解过了,也可以看看这篇二叉树:二叉搜索树登场!

(opens new window)再回顾一波。

了解了二叉搜索树之后,我们应该先举几个例子,画画图,看看有没有什么规律,如图:

n为1的时候有一棵树,n为2有两棵树,这个是很直观的。

来看看n为3的时候,有哪几种情况。

当1为头结点的时候,其右子树有两个节点,看这两个节点的布局,是不是和 n 为2的时候两棵树的布局是一样的啊!

(可能有同学问了,这布局不一样啊,节点数值都不一样。别忘了我们就是求不同树的数量,并不用把搜索树都列出来,所以不用关心其具体数值的差异)

当3为头结点的时候,其左子树有两个节点,看这两个节点的布局,是不是和n为2的时候两棵树的布局也是一样的啊!

当2为头结点的时候,其左右子树都只有一个节点,布局是不是和n为1的时候只有一棵树的布局也是一样的啊!

发现到这里,其实我们就找到了重叠子问题了,其实也就是发现可以通过dp[1] 和 dp[2] 来推导出来dp[3]的某种方式。

思考到这里,这道题目就有眉目了。

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

有2个元素的搜索树数量就是dp[2]。

有1个元素的搜索树数量就是dp[1]。

有0个元素的搜索树数量就是dp[0]。

所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]

如图所示:

此时我们已经找到递推关系了,那么可以用动规五部曲再系统分析一遍。

  1. 确定dp数组(dp table)以及下标的含义

dp[i] : 1到i为节点组成的二叉搜索树的个数为dp[i]

也可以理解是i个不同元素节点组成的二叉搜索树的个数为dp[i] ,都是一样的。

以下分析如果想不清楚,就来回想一下dp[i]的定义

  1. 确定递推公式

在上面的分析中,其实已经看出其递推关系, dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量]

j相当于是头结点的元素,从1遍历到i为止。

所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量

  1. dp数组如何初始化

初始化,只需要初始化dp[0]就可以了,推导的基础,都是dp[0]。

那么dp[0]应该是多少呢?

从定义上来讲,空节点也是一棵二叉树,也是一棵二叉搜索树,这是可以说得通的。

从递归公式上来讲,dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量] 中以j为头结点左子树节点数量为0,也需要dp[以j为头结点左子树节点数量] = 1, 否则乘法的结果就都变成0了。

所以初始化dp[0] = 1

  1. 确定遍历顺序

首先一定是遍历节点数,从递归公式:dp[i] += dp[j - 1] * dp[i - j]可以看出,节点数为i的状态是依靠 i之前节点数的状态。

那么遍历i里面每一个数作为头结点的状态,用j来遍历。

代码如下:

cpp 复制代码
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= i; j++) {
        dp[i] += dp[j - 1] * dp[i - j];
    }
}
  1. 举例推导dp数组

n为5时候的dp数组状态如图:

当然如果自己画图举例的话,基本举例到n为3就可以了,n为4的时候,画图已经比较麻烦了。

我这里列到了n为5的情况,是为了方便大家 debug代码的时候,把dp数组打出来,看看哪里有问题

综上分析完毕,C++代码如下:

cpp 复制代码
class Solution {
public:
    int numTrees(int n) {
        vector<int> dp(n + 1);
        dp[0] = 1;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= i; j++) {
                dp[i] += dp[j - 1] * dp[i - j];
            }
        }
        return dp[n];
    }
};
  • 时间复杂度:O(n\^2)
  • 空间复杂度:O(n)

大家应该发现了,我们分析了这么多,最后代码却如此简单!

# 总结

这道题目虽然在力扣上标记是中等难度,但可以算是困难了!

首先这道题想到用动规的方法来解决,就不太好想,需要举例,画图,分析,才能找到递推的关系。

然后难点就是确定递推公式了,如果把递推公式想清楚了,遍历顺序和初始化,就是自然而然的事情了。

可以看出我依然还是用动规五部曲来进行分析,会把题目的方方面面都覆盖到!

而且具体这五部分析是我自己平时总结的经验,找不出来第二个的,可能过一阵子 其他题解也会有动规五部曲了,哈哈

当时我在用动规五部曲讲解斐波那契的时候,一些录友和我反应,感觉讲复杂了。

其实当时我一直强调简单题是用来练习方法论的,并不能因为简单我就代码一甩,简单解释一下就完事了。

可能当时一些同学不理解,现在大家应该感受方法论的重要性了,加油💪

day41补

相关推荐
手握风云-9 分钟前
数据结构(Java版)第二期:包装类和泛型
java·开发语言·数据结构
怀澈1221 小时前
高性能服务器模型之Reactor(单线程版本)
linux·服务器·网络·c++
chnming19871 小时前
STL关联式容器之set
开发语言·c++
带多刺的玫瑰1 小时前
Leecode刷题C语言之统计不是特殊数字的数字数量
java·c语言·算法
爱敲代码的憨仔1 小时前
《线性代数的本质》
线性代数·算法·决策树
威桑2 小时前
MinGW 与 MSVC 的区别与联系及相关特性分析
c++·mingw·msvc
熬夜学编程的小王2 小时前
【C++篇】深度解析 C++ List 容器:底层设计与实现揭秘
开发语言·数据结构·c++·stl·list
yigan_Eins2 小时前
【数论】莫比乌斯函数及其反演
c++·经验分享·算法
Mr.132 小时前
什么是 C++ 中的初始化列表?它的作用是什么?初始化列表和在构造函数体内赋值有什么区别?
开发语言·c++
阿史大杯茶2 小时前
AtCoder Beginner Contest 381(ABCDEF 题)视频讲解
数据结构·c++·算法