机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种无监督学习算法,用于将数据分成K个不同的类别。该算法将每个数据点都视为一个向量,并通过计算各数据点之间的距离来确定它们所属的类别。具体地说,该算法的流程如下:

  1. 选择K个随机的点作为初始聚类中心;
  2. 对每个数据点,计算其与K个聚类中心之间的距离,并将其分配到距离最近的聚类中心所代表的类别;
  3. 对于每个类别,重新计算其聚类中心;
  4. 重复步骤2和3,直到聚类中心不再改变或达到预设停止条件。

K-均值聚类算法的优缺点如下:

优点:

  1. 实现简单,并且计算速度快,适用于大规模数据集。
  2. 对于处理高纬数据集有很好的可扩展性。
  3. 一般情况下效果还不错,并且容易解释结果。

缺点:

  1. 必须预先指定K值,而且对于不同的初值,算法会得到不同的结果。
  2. 对于非球形的类别分布效果不佳,因为K-均值聚类算法假设每个类别的形状都是球形的。
  3. 对于含有噪声或异常值的数据集表现不佳,因为它容易受到极端值的影响。
相关推荐
向量引擎小橙1 分钟前
视觉艺术的“奇点”:深度拆解 Gemini-3-Pro-Image-Preview 绘画模型,看这只“香蕉”如何重塑 AI 创作逻辑!
人工智能·python·gpt·深度学习·llama
AI周红伟3 分钟前
周红伟:数字人智能体构建实操,《数字人智能体部署应用:数字人大模型和智能体+Skills+RAG+Agent+Claude Code的部署应用案例实操》
人工智能
KG_LLM图谱增强大模型15 分钟前
人工智能本体论:大模型辅助构建AI概念层级体系
人工智能
Web3VentureView15 分钟前
X Space AMA回顾|预测熊市底部:当市场寻找价格,SYNBO正在构建未来
人工智能·物联网·金融·web3·区块链
H Corey30 分钟前
数据结构与算法:高效编程的核心
java·开发语言·数据结构·算法
SmartBrain1 小时前
Python 特性(第一部分):知识点讲解(含示例)
开发语言·人工智能·python·算法
byzh_rc1 小时前
[深度学习网络从入门到入土] 网络中的网络NiN
网络·人工智能·深度学习
AI周红伟1 小时前
周红伟:企业智能体构建实操,《下一代智能体:Claude code+Skills+Gemini+RAG+Agent智能体构建案例实操》
人工智能
向上的车轮1 小时前
Chaterm:AI 智能终端极简手册
人工智能
01二进制代码漫游日记1 小时前
自定义类型:联合和枚举(一)
c语言·开发语言·学习·算法