机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种无监督学习算法,用于将数据分成K个不同的类别。该算法将每个数据点都视为一个向量,并通过计算各数据点之间的距离来确定它们所属的类别。具体地说,该算法的流程如下:

  1. 选择K个随机的点作为初始聚类中心;
  2. 对每个数据点,计算其与K个聚类中心之间的距离,并将其分配到距离最近的聚类中心所代表的类别;
  3. 对于每个类别,重新计算其聚类中心;
  4. 重复步骤2和3,直到聚类中心不再改变或达到预设停止条件。

K-均值聚类算法的优缺点如下:

优点:

  1. 实现简单,并且计算速度快,适用于大规模数据集。
  2. 对于处理高纬数据集有很好的可扩展性。
  3. 一般情况下效果还不错,并且容易解释结果。

缺点:

  1. 必须预先指定K值,而且对于不同的初值,算法会得到不同的结果。
  2. 对于非球形的类别分布效果不佳,因为K-均值聚类算法假设每个类别的形状都是球形的。
  3. 对于含有噪声或异常值的数据集表现不佳,因为它容易受到极端值的影响。
相关推荐
熙梦数字化1 分钟前
企业资源计划(ERP)系统是什么?有哪些特点?
大数据·人工智能·erp
GISer_Jing3 分钟前
SSE Conf大会分享——大模型驱动的智能 可视分析与故事叙述
前端·人工智能·信息可视化
稚辉君.MCA_P8_Java5 分钟前
Gemini永久会员 Java 返回最长有效子串长度
java·数据结构·后端·算法
Wai-Ngai6 分钟前
自动驾驶控制算法——模型预测控制(MPC)
人工智能·机器学习·自动驾驶
北京耐用通信7 分钟前
突破协议壁垒:耐达讯自动化Ethernet/IP转CC-Link网关在工业互联中的核心应用
人工智能·网络协议·安全·自动化·信息与通信
扫描电镜7 分钟前
扫描电镜选购指南:智能、稳定与自动化的综合考量
人工智能·自动化·扫描电镜·自动扫描电镜
AI人工智能+8 分钟前
炫彩活体检测技术:利用RGB色光序列检测用户面部生物特征反应,能有效识别3D面具、Deepfake等伪造攻击
人工智能·人脸识别·炫彩活体检测
无代码专家10 分钟前
数字化转型下的订单管理全流程优化方案
大数据·运维·人工智能
QianCenRealSim13 分钟前
FSD入华“加速”中国自动驾驶产业的推动与重构
人工智能·重构·自动驾驶
roman_日积跬步-终至千里15 分钟前
【模式识别与机器学习(1+)】基础概念之:机器学习基础
人工智能·机器学习