机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种无监督学习算法,用于将数据分成K个不同的类别。该算法将每个数据点都视为一个向量,并通过计算各数据点之间的距离来确定它们所属的类别。具体地说,该算法的流程如下:

  1. 选择K个随机的点作为初始聚类中心;
  2. 对每个数据点,计算其与K个聚类中心之间的距离,并将其分配到距离最近的聚类中心所代表的类别;
  3. 对于每个类别,重新计算其聚类中心;
  4. 重复步骤2和3,直到聚类中心不再改变或达到预设停止条件。

K-均值聚类算法的优缺点如下:

优点:

  1. 实现简单,并且计算速度快,适用于大规模数据集。
  2. 对于处理高纬数据集有很好的可扩展性。
  3. 一般情况下效果还不错,并且容易解释结果。

缺点:

  1. 必须预先指定K值,而且对于不同的初值,算法会得到不同的结果。
  2. 对于非球形的类别分布效果不佳,因为K-均值聚类算法假设每个类别的形状都是球形的。
  3. 对于含有噪声或异常值的数据集表现不佳,因为它容易受到极端值的影响。
相关推荐
逑之36 分钟前
C语言笔记10:sizeof和strlen,指针与数组
c语言·笔记·算法
求梦82040 分钟前
【力扣hot100题】旋转图像(15)
算法·leetcode·职场和发展
工藤学编程2 小时前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
king王一帅3 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技5 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
C雨后彩虹5 小时前
任务最优调度
java·数据结构·算法·华为·面试
Dxy12393102167 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧7 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)7 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了7 小时前
CNNMNIST
人工智能·深度学习