机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种无监督学习算法,用于将数据分成K个不同的类别。该算法将每个数据点都视为一个向量,并通过计算各数据点之间的距离来确定它们所属的类别。具体地说,该算法的流程如下:

  1. 选择K个随机的点作为初始聚类中心;
  2. 对每个数据点,计算其与K个聚类中心之间的距离,并将其分配到距离最近的聚类中心所代表的类别;
  3. 对于每个类别,重新计算其聚类中心;
  4. 重复步骤2和3,直到聚类中心不再改变或达到预设停止条件。

K-均值聚类算法的优缺点如下:

优点:

  1. 实现简单,并且计算速度快,适用于大规模数据集。
  2. 对于处理高纬数据集有很好的可扩展性。
  3. 一般情况下效果还不错,并且容易解释结果。

缺点:

  1. 必须预先指定K值,而且对于不同的初值,算法会得到不同的结果。
  2. 对于非球形的类别分布效果不佳,因为K-均值聚类算法假设每个类别的形状都是球形的。
  3. 对于含有噪声或异常值的数据集表现不佳,因为它容易受到极端值的影响。
相关推荐
Desirediscipline17 小时前
cerr << 是C++中用于输出错误信息的标准用法
java·前端·c++·算法
xuxianliang17 小时前
第154章 “神谕”的低语(AI)
人工智能·程序员创富
geneculture17 小时前
人机互助新时代超级个体(OPC)的学术述评——基于人文学科与数理学科的双重视域
大数据·人工智能·哲学与科学统一性·信息融智学·融智时代(杂志)
KG_LLM图谱增强大模型17 小时前
给具身智能装上图谱大模型大脑,7B小模型超越72B大模型!层次化知识图谱让复杂机器人规划能力暴增17%,能耗大幅降低
人工智能·机器人·知识图谱
Renhao-Wan17 小时前
Java 算法实践(八):贪心算法思路
java·算法·贪心算法
2401_8362358617 小时前
名片识别产品:技术要点与应用场景深度解析
人工智能·科技·深度学习·ocr
zchxzl17 小时前
亲测2026京津冀可靠广告展会
大数据·人工智能·python
人工智能AI技术17 小时前
Stable Diffusion 3.0实战:用Colab免费训练你的专属AI绘画模型
人工智能·ai作画
今儿敲了吗17 小时前
23| 画展
c++·笔记·学习·算法
Jasmine_llq18 小时前
《AT_arc081_d [ARC081F] Flip and Rectangles》
算法·动态规划(dp)·贪心思想扩展 / 收缩边界·预处理转换网格状态·二维数组遍历实现逐点计算