机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种无监督学习算法,用于将数据分成K个不同的类别。该算法将每个数据点都视为一个向量,并通过计算各数据点之间的距离来确定它们所属的类别。具体地说,该算法的流程如下:

  1. 选择K个随机的点作为初始聚类中心;
  2. 对每个数据点,计算其与K个聚类中心之间的距离,并将其分配到距离最近的聚类中心所代表的类别;
  3. 对于每个类别,重新计算其聚类中心;
  4. 重复步骤2和3,直到聚类中心不再改变或达到预设停止条件。

K-均值聚类算法的优缺点如下:

优点:

  1. 实现简单,并且计算速度快,适用于大规模数据集。
  2. 对于处理高纬数据集有很好的可扩展性。
  3. 一般情况下效果还不错,并且容易解释结果。

缺点:

  1. 必须预先指定K值,而且对于不同的初值,算法会得到不同的结果。
  2. 对于非球形的类别分布效果不佳,因为K-均值聚类算法假设每个类别的形状都是球形的。
  3. 对于含有噪声或异常值的数据集表现不佳,因为它容易受到极端值的影响。
相关推荐
冰糖猕猴桃6 分钟前
【AI】把“大杂烩抽取”拆成多步推理:一个从单提示到多阶段管线的实践案例
大数据·人工智能·ai·提示词·多步推理
PPIO派欧云7 分钟前
PPIO上线GLM-OCR:0.9B参数SOTA性能,支持一键部署
人工智能·ai·大模型·ocr·智谱
雨大王51218 分钟前
怎么打造一个能自我进化的制造数字基座?
人工智能·汽车·制造
fengfuyao98525 分钟前
基于MATLAB的表面织构油润滑轴承故障频率提取(改进VMD算法)
人工智能·算法·matlab
爱吃泡芙的小白白29 分钟前
深入解析CNN中的Dropout层:从基础原理到最新变体实战
人工智能·神经网络·cnn·dropout·防止过拟合
机器学习之心32 分钟前
基于随机森林模型的轴承剩余寿命预测MATLAB实现!
算法·随机森林·matlab
一只小小的芙厨35 分钟前
寒假集训笔记·树上背包
c++·笔记·算法·动态规划
庄周迷蝴蝶42 分钟前
四、CUDA排序算法实现
算法·排序算法
以卿a1 小时前
C++(继承)
开发语言·c++·算法
I_LPL1 小时前
day22 代码随想录算法训练营 回溯专题1
算法·回溯算法·求职面试·组合问题