机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种无监督学习算法,用于将数据分成K个不同的类别。该算法将每个数据点都视为一个向量,并通过计算各数据点之间的距离来确定它们所属的类别。具体地说,该算法的流程如下:

  1. 选择K个随机的点作为初始聚类中心;
  2. 对每个数据点,计算其与K个聚类中心之间的距离,并将其分配到距离最近的聚类中心所代表的类别;
  3. 对于每个类别,重新计算其聚类中心;
  4. 重复步骤2和3,直到聚类中心不再改变或达到预设停止条件。

K-均值聚类算法的优缺点如下:

优点:

  1. 实现简单,并且计算速度快,适用于大规模数据集。
  2. 对于处理高纬数据集有很好的可扩展性。
  3. 一般情况下效果还不错,并且容易解释结果。

缺点:

  1. 必须预先指定K值,而且对于不同的初值,算法会得到不同的结果。
  2. 对于非球形的类别分布效果不佳,因为K-均值聚类算法假设每个类别的形状都是球形的。
  3. 对于含有噪声或异常值的数据集表现不佳,因为它容易受到极端值的影响。
相关推荐
玄同7653 分钟前
Python 装饰器:LLM API 的安全与可观测性增强
开发语言·人工智能·python·安全·自然语言处理·numpy·装饰器
房产中介行业研习社7 分钟前
市面上比较主流的房产中介管理系统有哪些推荐?
大数据·人工智能·房产直播技巧·房产直播培训
学习3人组9 分钟前
目标检测模型选型+训练调参极简步骤清单
人工智能·目标检测·决策树
Yeats_Liao9 分钟前
MindSpore开发之路(十七):静态图 vs. 动态图:掌握MindSpore的两种执行模式
人工智能·深度学习·机器学习
keep_learning11123 分钟前
Z-Image模型架构全解析
人工智能·算法·计算机视觉·大模型·多模态
点云SLAM25 分钟前
Boost中Graph模块中boost::edge_capacity和boost::edge_capacity_t
数据库·算法·edge·图论·最大团·最大流算法·boost库使用
雅欣鱼子酱29 分钟前
Type-C接口小家电 PD诱骗电压方案
人工智能·芯片·电子元器件
O561 6O623O7 安徽正华露31 分钟前
露,足趾容积测量仪 足趾肿胀测量仪
人工智能
FL162386312933 分钟前
电力场景输电线路电缆线异常连接处缺陷金属部件腐蚀检测数据集VOC+YOLO格式3429张5类别
人工智能·yolo·机器学习
乾元33 分钟前
数据中心流量工程(TE)优化:当 AI 成为解决“维度诅咒”的唯一操纵杆
运维·服务器·网络·人工智能·架构·自动化