783. Minimum Distance Between BST Nodes
思路(DFS 中序遍历)
考虑中序遍历的性质即可
代码
cpp
class Solution {
public:
int min_diff=numeric_limits<int>::max();
int prev=numeric_limits<int>::min()+100000;
int minDiffInBST(TreeNode* root) {
inorderTraversal(root);
return min_diff;
}
void inorderTraversal(TreeNode* root){
if (root== nullptr){
return ;
}
inorderTraversal(root->left);
min_diff=min(min_diff,root->val-prev);
prev=root->val;
inorderTraversal(root->right);
}
};
814. Binary Tree Pruning
思路(DFS)
对于一个节点是否删除,有如下几种情况:
863. All Nodes Distance K in Binary Tree
思路(DFS)
首先,需要通过dfs算法找到从原点到目标点的路径。 p a t h = [ 2 , 3 , 5 , 7 ] path=[2,3,5,7] path=[2,3,5,7], k = 2 k=2 k=2。其中7为目标点然后考虑对路径的每一节点,进行下列计算:
对于从原点到目标节点的路径。由目标点至上逐级考虑:
- 对于目标点7,需要考虑所有距离目标节点距离为k的子节点(DFS)
- 对于目标上一个节点5,从7至5的距离为1,因此考虑与5距离为1的子节点,同时将7设为已访问,防止重复遍历。
- 。。。以此类推
代码
cpp
class Solution {
public:
vector<int> ans;
vector<TreeNode*> _path;
vector<TreeNode*> path;
unordered_set<int> visited;
vector<int> distanceK(TreeNode* root, TreeNode* target, int k) {
_path.push_back(root);
findPath(root,target->val);
findNodes(path.back(),k);
path.pop_back();
k--;
visited.insert(target->val);
int size=path.size()-1;
for (int i = size; i >=0 ; i--) {
findNodes(path[i],k);
visited.insert(path[i]->val);
k--;
}
return ans;
}
void findPath(TreeNode* root,int target){
if (root->val==target){
for (auto curr:_path) {
path.push_back(curr);
}
return;
}
if (root->left){
_path.push_back(root->left);
findPath(root->left,target);
_path.pop_back();
}
if (root->right){
_path.push_back(root->right);
findPath(root->right,target);
_path.pop_back();
}
}
void findNodes(TreeNode* root,int distance){
if (distance==0&&!visited.count(root->val)){
ans.push_back(root->val);
visited.insert(root->val);
}
else {
if (root->left&&!visited.count(root->left->val)){
findNodes(root->left,distance-1);
}
if (root->right&&!visited.count(root->right->val)){
findNodes(root->right,distance-1);
}
}
}
};
865. Smallest Subtree with all the Deepest Nodes
思路 DFS
在遍历时带有层数信息以及路径信息即可,通过DFS遍历获取最深层的节点以及其路径,然后通过从头到尾遍历确认那一层是最后的公共节点。
代码
java
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
ArrayList<TreeNode> path = new ArrayList<>();
int max_depth = 0;
ArrayList<ArrayList<TreeNode>> res = new ArrayList<>();
public TreeNode subtreeWithAllDeepest(TreeNode root) {
path.add(root);
dfs(root, 1);
if (res.size() == 1) {
int len = res.get(0).size();
return res.get(0).get(len - 1);
}
TreeNode prev = null;
for (int i = 0; i < res.get(0).size(); i++) {
int first = res.get(0).get(i).val;
for (int j = 1; j < res.size(); j++) {
if (res.get(j).get(i).val != first) {
return prev;
}
}
prev = res.get(0).get(i);
}
return prev;
}
public void dfs(TreeNode node, int depth) {
if (node.left == null && node.right == null) {
if (depth < max_depth) {
return;
}
if (depth > max_depth) {
res.clear();
max_depth = depth;
}
res.add(new ArrayList<>(path));
return;
}
if (node.left != null) {
path.add(node.left);
dfs(node.left, depth + 1);
path.remove(path.size() - 1);
}
if (node.right != null) {
path.add(node.right);
dfs(node.right, depth + 1);
path.remove(path.size() - 1);
}
}
}
1123. Lowest Common Ancestor of Deepest Leaves(与865重复)
思路 DFS
同865
代码
同865
1448. Count Good Nodes in Binary Tree
思路 BFS
每次遍历时,带着先前节点的最大值。若当前节点值大于等于先前的最大值,则结果+1,并更新最大值。递归遍历其左右子节点。
代码
java
class Solution {
int ans=0;
public int goodNodes(TreeNode root) {
goodNodesImpl(root,Integer.MIN_VALUE);
return ans;
}
public void goodNodesImpl(TreeNode root,int prevMax){
if (root==null){
return;
}
if (prevMax<=root.val){
ans++;
prevMax=root.val;
}
goodNodesImpl(root.left,prevMax);
goodNodesImpl(root.right,prevMax);
}
}