Re45:读论文 GPT-1 Improving Language Understanding by Generative Pre-Training

诸神缄默不语-个人CSDN博文目录
诸神缄默不语的论文阅读笔记和分类

论文全名:Improving Language Understanding by Generative Pre-Training

论文下载地址:https://www.mikecaptain.com/resources/pdf/GPT-1.pdf

本文是2018年OpenAI的工作,是初代GPT的原始论文。

先用无监督数据预训练语言模型(Transformer decoder),再在有监督数据上微调(加一层prediction head,同时优化语言模型和有监督任务的损失函数)

文章目录

  • [1. 简介](#1. 简介)
  • [2. GPT-1](#2. GPT-1)
    • [1. 无监督预训练语言模型](#1. 无监督预训练语言模型)
    • [2. 微调](#2. 微调)
  • [3. 实验](#3. 实验)
    • [1. 数据集](#1. 数据集)
    • [2. 下游任务指标](#2. 下游任务指标)
    • [3. 模型分析](#3. 模型分析)

1. 简介

NLU任务包括textual entailment, question answering, semantic similarity assessment, and document classification等子任务,本文测试了NLI、QA、语义相似度和文本分类4个任务。

有监督数据稀少,本文的解决方案是在语言模型上用海量无标签数据上进行generative pre-training,然后再在特定子任务上discriminative fine-tuning。

(算半监督学习)

普遍的使用无监督方法来学习语言学知识的方法,是构建预训练词嵌入来提升NLP任务的效果,这种做法有两个问题:1. 在学习文本表征中使用什么优化目标对迁移最有效,不知道。至今没有绝对优秀的方法。2. 如何利用文本表征最有效,不知道。

2. GPT-1

1. 无监督预训练语言模型

标准语言模型目标,最大化文本的似然:

( k k k是上下文窗口尺寸,条件概率 P P P,神经网络的参数 Θ \Theta Θ)

本文用多层Transofmer decoder^1^(多头自注意力机制+position-wise前馈神经网络生成target token上的输出分布):

U U U是token, n n n是层数, W e W_e We是token嵌入矩阵, W p W_p Wp是position embedding矩阵

Transformer相比LSTM的优势体验在对长文本的处理上

2. 微调

通过输入(每个任务被转变成不同形式的输入,见figure 1)得到表征,喂进线性输出层来预测 y y y:

新的优化目标:

事实上是将两个优化目标加起来:

3. 实验

1. 数据集

  1. 上游预训练数据:BooksCorpus和1B Word Benchmark
  2. 下游微调数据

2. 下游任务指标

  1. NLI任务的实验结果
  2. QA和常识推理的实验结果
  3. 语义相似度和文本分类的实验结果

3. 模型分析

  1. 层数对微调结果的影响(答案是越多越好)和预训练更新次数对zero-shot表现的影响
    (数值是经规范化后得到的)
  2. ablation study

  1. Generating Wikipedia by Summarizing Long Sequences ↩︎
相关推荐
AAA 建材批发王哥(天道酬勤)5 分钟前
SK海力士(SK Hynix)是全球领先的半导体制造商之一,其在无锡的工厂主要生产DRAM和NAND闪存等存储器产品。
gpt
三月七(爱看动漫的程序员)2 小时前
LARGE LANGUAGE MODELS ARE HUMAN-LEVEL PROMPT ENGINEERS
大数据·人工智能·算法·语言模型·自然语言处理·prompt
kongba0074 小时前
运行fastGPT 第四步 配置ONE API 添加模型
人工智能·经验分享·gpt·ubuntu·chatgpt
weixin_583510284 小时前
CV与NLP经典大模型解读
人工智能·深度学习·神经网络·算法·自然语言处理
阿里云云原生4 小时前
阿里云通义实验室自然语言处理方向负责人黄非:通义灵码2.0,迈入 Agentic AI
人工智能·阿里云·自然语言处理
Seeklike11 小时前
初识NLP
人工智能·自然语言处理
GISer_Jing11 小时前
LLM(大语言模型)支撑下的传统工作流转型发展为AI工作流
人工智能·语言模型·自然语言处理
致Great13 小时前
RAG 切块Chunk技术总结与分块实现思路分享
人工智能·llm·nlp
诸神缄默不语13 小时前
Re78 读论文:GPT-4 Technical Report
chatgpt·llm·论文·openai·transformers·大规模预训练语言模型·gpt-4
yuanlulu14 小时前
llamafactory使用8张昇腾910b算力卡lora微调训练qwen2-72b大模型
lora·llm·transformer·分布式训练·大语言模型·huggingface·多卡训练