【深度学习】树莓派Zero w深度学习模型Python推理

在机器学习开发过程中,当模型训练好后,接下来就要进行模型推理了,根据部署环境可分为三类场景:

边缘计算:一般指手机,嵌入式设备,直接在数据生成的设备上进行推理,因为能避免将采集到的数据上传到云端,所以实时性非常好。

端计算:介于云和边缘设备之间的计算平台,个人PC可以归为这一类。

云计算:指云计算平台,具有强大的计算和存储能力,通过服务释放AI能力。

在之前跟大家分享的AI工具中,都是在PC上进行推理,也就是属于端设备推理。

bash 复制代码
基于深度学习的抠图工具
https://github.com/AIDajiangtang
基于深度学习的图像拼接工具
https://github.com/AIDajiangtang/Superpoint-LightGlue-Image-Stiching
基于大模型的分割工具
https://github.com/AIDajiangtang/Segment-Anything-CPP
https://github.com/AIDajiangtang/Segment-Anything-CSharp

今天,我将为大家演示如何在边缘设备上进行推理。

要准备毕业设计的小伙伴可以作为参考。

我选择的边缘设备是树莓派的Zero w开发板,硬件配置参数如下:

bash 复制代码
1GHz single-core CPU ARM11 ARMv6

512MB RAM

Mini HDMI® port

Micro USB OTG port

Micro USB power

HAT-compatible 40-pin header

Composite video and reset headers

CSI camera connector (v1.3 only)

这里多说一点,对于ARM芯片,要区分芯片系列与CPU架构。不同的CPU架构对应不同的指令集,如果涉及从源码编译需要考虑CPU架构。

css 复制代码
ARM7:
时间点:ARM7系列处理器于1994年发布。
特点:ARM7系列处理器是ARM架构的早期版本,采用32位RISC架构,主要用于嵌入式系统和低功耗设备。它具有较低的功耗和成本,适用于资源受限的应用。
CPU架构:ARMv4T架构。

ARM9:
时间点:ARM9系列处理器于1997年发布。
特点:ARM9系列处理器也是基于32位RISC架构,用于多种应用,包括嵌入式系统、移动设备和数字音频。它具有较高的性能和灵活性,适用于中等功耗和性能需求的应用。
CPU架构:ARMv5TE架构。


ARM11:
时间点:ARM11系列处理器于2002年发布。
特点:ARM11系列处理器同样采用32位RISC架构,主要应用于移动设备和数字媒体领域。它具有更高的性能和计算能力,支持多媒体处理和浮点运算。
CPU架构:ARMv6架构。

ARM Cortex-A:
时间点:ARM Cortex-A系列处理器于2005年发布。
特点:Cortex-A系列面向高性能应用,用于智能手机、平板电脑、服务器和其他需要较高处理性能的设备。它具有更强大的处理能力、更高的频率和更复杂的功能。
CPU架构:基于ARMv7-A或ARMv8-A架构。

ARM Cortex-R:
时间点:ARM Cortex-R系列处理器于2004年发布。
特点:Cortex-R系列面向实时应用,用于嵌入式系统、汽车电子、工业控制等需要快速响应和可靠性的应用。它具有较低的延迟和更可靠的实时性能。
CPU架构:基于ARMv7-R或ARMv8-R架构。

ARM Cortex-M:
时间点:ARM Cortex-M系列处理器于2004年发布。
特点:Cortex-M系列面向低功耗嵌入式系统,用于微控制器、传感器、物联网设备等资源受限的应用。它具有较低的功耗、小尺寸和高效的实时性能。
CPU架构:基于ARMv6-M或ARMv7-M架构。

常见ARM芯片系列和架构

我们选择的Raspberry Zero w属于ARM11系列,ARMv6 CPU架构,支持wifi。

bash 复制代码
Raspberry Pi 1 Model A/B/A+/B+:
CPU系列:ARM11系列
CPU架构:ARMv6架构

Raspberry Pi 2 Model B:
CPU系列:ARM Cortex-A系列
CPU架构:ARMv7-A架构

Raspberry Pi 3 Model B/B+:
CPU系列:ARM Cortex-A系列
CPU架构:ARMv8-A架构

Raspberry Pi 4 Model B:
CPU系列:ARM Cortex-A系列
CPU架构:ARMv8-A架构

Raspberry Pi Zero/Zero W:
CPU系列:ARM11系列
CPU架构:ARMv6架构

Raspberry Pi Compute Module 3/3+:
CPU系列:ARM Cortex-A系列
CPU架构:ARMv8-A架构

Raspberry Pi Compute Module 4:
CPU系列:ARM Cortex-A系列
CPU架构:ARMv8-A架构

常见树莓派开发板CPU型号

由于本项目涉及到的软件比较多,我帮大家整理到一起了。

关注微信公众号:人工智能大讲堂,后台回复【rsb】获取模型和所有安装包。

开始吧。

准备硬件

除了开发板外,还需要USB电源,摄像头,miscro SD卡,以及读卡器。某宝上可以买到,然后按下图连接

准备推理框架

按理讲,硬件就绪后,接下来应该安装操作系统了,为什么要先说推理框架呢?也是出于无奈啊!

我选择的推理框架是tensorflow lite,但它对于ARMv6没有现成的pip安装包,也就是没办法通过下面的命令安装推理运行时。

bash 复制代码
python3 -m pip install tflite-runtime

有两种解决方法。

第一种是安装好树莓派操作系统后自己准备编译环境,然后从源码编译tensorflow lite whl安装包。

bash 复制代码
https://www.tensorflow.org/lite/guide/build_cmake_pip

第二种则是去网上找现成的针对ARM v6架构的安装包。

我选择了第二种。

开源的力量是强大的,我在Github上真就找到了一个针对ARM v6架构的whl安装包,虽然是完整的tensorflow安装包,但可以通过导出tensorflow lite来使用推理功能。

bash 复制代码
import tensorflow as tf
interpreter = tf.lite.Interpreter(model_path=args.model_file)

安装包下载连接

bash 复制代码
https://github.com/lhelontra/tensorflow-on-arm/releases/download/v2.4.0/tensorflow-2.4.0-cp37-none-linux_armv6l.whl

这里需要注意,该pip安装包是在python3.7环境下编译的,所以树莓派开发板也要安装自带python3.7的操作系统,这也是为什么先确定推理框架的原因。

准备操作系统

接下来就要找自带python3.7的树莓派操作系统。

除了python3.7外,另一个需要考虑的因素是内存,我们本次选择的Raspberry Zero w内存只有500M,为了运行效率,选择操作系统时建议选择不带桌面的Lite版本。

对于内存比较大的开发板,则可以选择带桌面的操作系统,甚至可以选择带预装各种软件环境的操作系统。

幸好,我在Archive找到python3.7的操作系统。

操作系统下载链接

bash 复制代码
https://downloads.raspberrypi.org/raspios_lite_armhf/images/raspios_lite_armhf-2021-05-28/

下载后保存到另一台电脑硬盘中等待使用。

接下来要通过树莓派自带的工具Raspberry pi Imager将操作系统烧录到miscro sd卡中。

将sd卡放入读卡器,插到另一台电脑USB接口上。

bash 复制代码
https://www.raspberrypi.com/software/

启动刻录软件

1.选择操作系统->使用自定义镜像

2.选择SD卡

3.设置

3.1勾选设置主机名,输入主机名

3.2勾选开启SSH服务,选择使用密码登录

3.3勾选设置操作系统用户名和密码,输入用户名和密码

3.4勾选配置WIFI,设置热点名和登录密码(可以用手机热点)

4.烧录

烧录成功后,将miscro sd卡插到树莓派sd卡插槽上,连接电源就可以开机了。

远程连接树莓派

由于没有桌面环境,所以需要另一台电脑远程连接到树莓派上,此时Raspberry Zero w支持wifi就起到作用了,安装操作系统时我们会配置网络,树莓派启动后主动连接热点,另一台电脑也连接到同一个热点,就可以远程了。

通过手机热点查看树莓派IP地址。

另一台电脑连接同一个手机热点。

启动另一台电脑的Windows PowerShell。

输入ssh 树莓派用户名@树莓派IP

bash 复制代码
例如 ssh rsb@192.168.133.223,根据提示需要输入密码。

光有远程还不够,还需要能够在两个系统之间传输文件,推荐在另一台电脑中安装WinSCP。

启动WinSCP,输入树莓派主机名,用户名和密码。

安装软件

安装tensorflow

bash 复制代码
wget https://github.com/lhelontra/tensorflow-on-arm/releases/download/v2.2.0/tensorflow-2.2.0-cp37-none-linux_armv6l.whl
bash 复制代码
sudo pip3 install tensorflow-2.2.0-cp37-none-linux_armv6l.whl

安装完成后通过下面命令查看是否安装成功

bash 复制代码
python -c "import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([100, 100])))"

如果报类似下面这样的错误

TypeError: Descriptors cannot not be created directly.

可以尝试通过下面命令解决

bash 复制代码
Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python

安装OpenCV

bash 复制代码
sudo apt-get -y install libjpeg-dev libtiff5-dev libjasper-dev libpng12-dev
sudo apt-get -y install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
sudo apt-get -y install libxvidcore-dev libx264-dev
sudo apt-get -y install qt4-dev-tools libatlas-base-dev
sudo apt-get install libgstreamer1.0-dev
sudo apt-get install libopenexr-dev
sudo apt-get install libilmbase-dev

根据环境的不同,可能有些已安装,可能还缺少其他安装包,根据情况安装。

bash 复制代码
pip3 install opencv-python==3.4.6.27

也可以把上面的版本去掉,安装最新版本。

开始推理

软硬件都准备好后,就可以开始进行推理了。

准备tflite模型

由于tensorflow lite仅支持tflite格式的模型,如果你使用其他框架训练的,需要转换成tflite格式。

由于我的目的是为了演示如何在嵌入式设备上运行推理,所以选择什么模型不重要。

我给大家准备了一个水果分类和检测的模型,关注微信公众号:人工智能大讲堂,后台回复【rsb】获取模型和前面所有安装包。

模型在model文件夹下,cls_model.tflite为分类模型,det_model.tflite为目标检测模型。

分类模型类别标签

目标检测模型类别标签

打开摄像头

树莓派开发板通过外接摄像头来拍摄图像。

bash 复制代码
sudo raspi-config

选择Interface Options---camera,选择yes,将摄像头权限开启,我们便可以使用树莓派进行摄像头拍照了。

在命令行执行如下命令测试,如果看到文件夹中新增了image.jpg文件,则代表配置成功。

bash 复制代码
raspistill -t 2000 -o image.jpg

开始推理

python 复制代码
import tensorflow as tf
import numpy as np
import cv2



det = true//是分类还是目标检测

model_path="cls_model.tflite"
if det:
  model_path="det_model.tflite"

# 加载分类tflite文件
interpreter = tf.lite.Interpreter(model_path)
interpreter.allocate_tensors()
label_id_offset = 1


# Again, uncomment this decorator if you want to run inference eagerly
def detect(interpreter, input_tensor):
  """Run detection on an input image.

  Args:
    interpreter: tf.lite.Interpreter
    input_tensor: A [1, height, width, 3] Tensor of type tf.float32.
      Note that height and width can be anything since the image will be
      immediately resized according to the needs of the model within this
      function.

  Returns:
    A dict containing 3 Tensors (`detection_boxes`, `detection_classes`,
      and `detection_scores`).
  """
  input_details = interpreter.get_input_details()
  output_details = interpreter.get_output_details()

  # We use the original model for pre-processing, since the TFLite model doesn't
  # include pre-processing.
  preprocessed_image, shapes = detection_model.preprocess(input_tensor)
  interpreter.set_tensor(input_details[0]['index'], preprocessed_image.numpy())

  interpreter.invoke()

  boxes = interpreter.get_tensor(output_details[0]['index'])
  classes = interpreter.get_tensor(output_details[1]['index'])
  scores = interpreter.get_tensor(output_details[2]['index'])
  return boxes, classes, scores

# 定义摄像头
capture = cv2.VideoCapture(0)

while True:
    # 拍照并预处理照片
    ret, frame = capture.read()
    frame = cv2.flip(frame, 1)
    frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    
    if det:
      resized_image = cv2.resize(frame_rgb, (300, 300))
    else:
      resized_image = cv2.resize(frame_rgb, (224, 224))
      
    resized_image = resized_image .astype(np.float32)
    # 将像素值缩放到0-1范围
    resized_image /= 255.0
    # 将像素值缩放到-1到1范围
    resized_image = (resized_image - 0.5) * 2.0
        
    test = np.expand_dims(resized_image, axis=0)
    input_tensor = tf.convert_to_tensor(test, dtype=tf.float32)
    # 目标检测模型进行检测
    boxes, classes, scores = detect(interpreter, input_tensor)
    viz_utils.visualize_boxes_and_labels_on_image_array(
        test[0],
        boxes[0],
        classes[0].astype(np.uint32) + label_id_offset,
        scores[0],
        category_index,
        use_normalized_coordinates=True,
        min_score_thresh=0.8)
    # 呈现检测结果
    frame = cv2.cvtColor(test[0], cv2.COLOR_BGR2RGB)
    cv2.imshow("Object detector", frame)
    c = cv2.waitKey(20)
    # 如果按q键,则终止
    if c == 113:
        break
cv2.destroyAllWindows()

最终结果

相关推荐
石板小湫15 分钟前
【Proteus51单片机仿真】基于51单片机的汽车电动助力转向系统(包括代码讲解视频电流传感器、车速传感器、扭矩传感器、LCD12864显示模块)
嵌入式硬件·汽车·51单片机·proteus
firewood202419 分钟前
初学51单片机之IO口上下拉电阻相关
单片机·嵌入式硬件
A 八方20 分钟前
Python MongoDB
开发语言·python·mongodb
耶耶耶!ohh1 小时前
嵌入式入门小工程
单片机·嵌入式硬件
sz66cm2 小时前
Python基础 -- 使用Python实现ssh终端并实现数据处理与统计功能
开发语言·python·ssh
网络研究院2 小时前
人工智能有助于解决 IT/OT 集成安全挑战
网络·人工智能·安全·报告·工业·状况
七哥的AI日常3 小时前
个人随想-gpt-o1大模型中推理链的一个落地实现
人工智能
ac-er88884 小时前
如何在Flask中实现国际化和本地化
后端·python·flask
Adolf_19934 小时前
Flask-WTF的使用
后端·python·flask
空城皆是旧梦4 小时前
python爬虫初体验(一)
爬虫·python