回归预测 | MATLAB实现MPA-BiGRU海洋捕食者算法优化双向门控循环单元多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现MPA-BiGRU海洋捕食者算法优化双向门控循环单元多输入单输出回归预测(多指标,多图)

目录

    • [回归预测 | MATLAB实现MPA-BiGRU海洋捕食者算法优化双向门控循环单元多输入单输出回归预测(多指标,多图)](#回归预测 | MATLAB实现MPA-BiGRU海洋捕食者算法优化双向门控循环单元多输入单输出回归预测(多指标,多图))

效果一览


基本介绍

MPA-BiGRU海洋捕食者算法优化双向门控循环单元的数据多变量回归/时间序列预测 可直接运行 Matlab语言

1.多变量单输出模型,也可替换为时间序列单列输入预测。评价指标包括:R2、MAE、RMSE和MAPE等,图很多,包括迭代曲线图、预测效果图,可完全满足您的需求~

2.海洋捕食者算法是近年提出的优化算法,具有寻优能力强,收敛速度快等特点,用的人还很少,也可替换为NGO、GOA等优化算法。

3.优化算法优化深度学习类模型运行较慢属正常现象,请耐心等待~

4.附赠测试数据 直接替换数据即可用 直接运行main一键出图 适合新手小白~

程序设计

  • 完整源码和数据获取方式:私信回复PSO-SDAE粒子群优化堆叠去噪自编码器多输入单输出回归预测(多指标,多图)
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('data.xlsx');

%%  划分训练集和测试集
temp = randperm(103);

P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);



%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);



%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161

[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关推荐
机器学习之心4 天前
Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量回归预测
多输入单输出回归预测·cnn·gru·transformer·cnn-gru
机器学习之心8 天前
粒子群优化双向深度学习!PSO-BiTCN-BiGRU-Attention多输入单输出回归预测
人工智能·深度学习·回归·多输入单输出回归预测·pso-bitcn-bigru
机器学习之心10 天前
回归预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测
随机森林·matlab·回归·多输入单输出回归预测·rf-adaboost
机器学习之心1 个月前
回归预测 | Matlab基于SABO-SVR减法平均算法优化支持向量机的数据多输入单输出回归预测
支持向量机·matlab·回归·多输入单输出回归预测·减法平均算法·sabo-svr
机器学习之心1 个月前
回归预测 | Matlab基于POA-SVR鹈鹕算法优化支持向量机的数据多输入单输出回归预测
多输入单输出回归预测·poa-svr·鹈鹕算法优化支持向量机
机器学习之心3 个月前
回归预测 | Matlab实现BES-ESN秃鹰搜索算法优化回声状态网络多输入单输出回归预测
matlab·回归·多输入单输出回归预测·回声状态网络·bes-esn·秃鹰搜索算法优化
机器学习之心5 个月前
回归预测 | Matlab实现GWO-ESN基于灰狼算法优化回声状态网络的多输入单输出回归预测
多输入单输出回归预测·gwo-esn·灰狼算法优化回声状态网络
机器学习之心6 个月前
回归预测 | Matlab实现NGO-ESN北方苍鹰算法优化回声状态网络多输入单输出回归预测
多输入单输出回归预测·北方苍鹰算法优化·回声状态网络·ngo-esn
机器学习之心7 个月前
回归预测 | Matlab基于RIME-SVR霜冰算法优化支持向量机的数据多输入单输出回归预测
支持向量机·多输入单输出回归预测·霜冰算法优化·rime-svr
机器学习之心7 个月前
独家原创 | Matlab实现INFO-BiTCN-BiGRU-Attention多输入单输出回归预测
多输入单输出回归预测·attention·bitcn-bigru·info·向量加权