Pytorch从零开始实战03

Pytorch从零开始实战------天气识别

本系列来源于365天深度学习训练营

原作者K同学

文章目录

环境准备

本文基于Jupyter notebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。

第一步,导入常用包。

python 复制代码
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
import torch.nn.functional as F
import torchvision.transforms as transforms
import random
import time
import numpy as np
import pandas as pd
import datetime
import gc
import pathlib
import os
import PIL
os.environ['KMP_DUPLICATE_LIB_OK']='True'  # 用于避免jupyter环境突然关闭
torch.backends.cudnn.benchmark=True  # 用于加速GPU运算的代码

创建设备对象。

python 复制代码
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device # device(type='cuda')

设置随机数种子

python 复制代码
torch.manual_seed(428)
torch.cuda.manual_seed(428)
torch.cuda.manual_seed_all(428)
random.seed(428)
np.random.seed(428)

数据集

本次实验使用的天气图片数据集,共有1127张天气图片,分别存在'cloudy', 'sunrise', 'shine', 'rain'四个文件夹中,其中文件夹名代表类别。数据集获取可联系K同学。

导入数据集。

根据自己数据集存放的路径,转换为pathlib.Path对象,然后获取路径下的所有文件路径,使用字符串分割函数获取文件名,也就是类别名。

python 复制代码
data_dir = './data/weather_photos'
data_dir = pathlib.Path(data_dir) # 转换为pathlib.Path对象

data_paths = list(data_dir.glob('*')) # 获取data_dir路径下的所有文件路径
data_paths # data/weather_photos/xxxx
classNames = [str(path).split("/")[2] for path in data_paths]
classNames # ['cloudy', 'sunrise', 'shine', 'rain']

对数据集进行预处理。调整到相同的尺寸,转换为张量对象,并进行标准化处理。使用torchvision.datasets.ImageFolder函数读取数据集,并且使用文件名当做数据集的标签。

python 复制代码
total_dir = './data/weather_photos'
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]), # 调整相同的尺寸
    transforms.ToTensor(),
    transforms.Normalize(          # 标准化处理-->转换为标准正太分布
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225]
    )
])
total_data = torchvision.datasets.ImageFolder(total_dir, transform=train_transforms) # 通过total_dir下的子文件夹当做标签
total_data

我们根据8:2划分训练集和测试集。

python 复制代码
# 划分数据集
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_ds, test_ds = torch.utils.data.random_split(total_data, [train_size, test_size])
len(train_ds), len(test_ds) # (901, 226)

又是前面几篇出现的函数,随机查看五张图片。

python 复制代码
def plotsample(data):
    fig, axs = plt.subplots(1, 5, figsize=(10, 10)) #建立子图
    for i in range(5):
        num = random.randint(0, len(data) - 1) #首先选取随机数,随机选取五次
        #抽取数据中对应的图像对象,make_grid函数可将任意格式的图像的通道数升为3,而不改变图像原始的数据
        #而展示图像用的imshow函数最常见的输入格式也是3通道
        npimg = torchvision.utils.make_grid(data[num][0]).numpy()
        nplabel = data[num][1] #提取标签 
        #将图像由(3, weight, height)转化为(weight, height, 3),并放入imshow函数中读取
        axs[i].imshow(np.transpose(npimg, (1, 2, 0))) 
        axs[i].set_title(nplabel) #给每个子图加上标签
        axs[i].axis("off") #消除每个子图的坐标轴

plotsample(train_ds)

使用DataLoder将它按照batch_size批量划分,并将数据集顺序打乱。

python 复制代码
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_ds, batch_size=batch_size, shuffle=True)
test_dl = torch.utils.data.DataLoader(test_ds, batch_size=batch_size, shuffle=True)
for X, y in test_dl:
    print(X.shape) # 32, 3, 224, 224
    print(y) # 3 0 2 0 3 2 0 0 2 1....
    break

模型选择

本文使用卷积神经网络,大致流程是卷积->卷积->池化->卷积->卷积->池化->线性层,并进行数据归一化处理,本文选用的卷积核大小为5 * 5。

python 复制代码
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv1 = nn.Conv2d(3, 12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(12, 12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool2 = nn.MaxPool2d(2, 2)
        self.conv3 = nn.Conv2d(12, 24, kernel_size=5, stride=1, padding=0)
        self.bn3 = nn.BatchNorm2d(24)
        self.conv4 = nn.Conv2d(24, 24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.pool4 = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(24 * 50 * 50, len(classNames))

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = self.pool2(x)
        x = F.relu(self.bn3(self.conv3(x)))
        x = F.relu(self.bn4(self.conv4(x)))
        x = self.pool4(x)
        x = x.view(-1, 24 * 50 * 50)
        x = self.fc1(x)
        return x

使用summary展示模型架构。

python 复制代码
from torchsummary import summary
# 将模型转移到GPU中
model = Model().to(device)
summary(model, input_size=(3, 224, 224))

模型训练

定义超参数,本次选择的学习率为0.0001,经实验,最初设置为0.01效果并不是很好。

python 复制代码
loss_fn = nn.CrossEntropyLoss()
learn_rate = 0.0001
opt = torch.optim.SGD(model.parameters(), lr=learn_rate)

训练函数。

python 复制代码
def train(dataloader, model, loss_fn, opt):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    train_acc, train_loss = 0, 0

    for X, y in dataloader:
        X, y = X.to(device), y.to(device)
        pred = model(X)
        loss = loss_fn(pred, y)

        opt.zero_grad()
        loss.backward()
        opt.step()

        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc /= size
    train_loss /= num_batches
    return train_acc, train_loss

测试函数。

python 复制代码
def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    test_acc, test_loss = 0, 0
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
            pred = model(X)
            loss = loss_fn(pred, y)
    
            test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
            test_loss += loss.item()

    test_acc /= size
    test_loss /= num_batches
    return test_acc, test_loss

开始训练,训练20轮,在测试集准确率达到94.7%,还是很不错的。

python 复制代码
import time
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []

T1 = time.time()

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval() # 确保模型不会进行训练操作
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
        
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    print("epoch:%d, train_acc:%.1f%%, train_loss:%.3f, test_acc:%.1f%%, test_loss:%.3f"
          % (epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
print("Done")
T2 = time.time()
print('程序运行时间:%s毫秒' % ((T2 - T1)*1000))

数据可视化

使用matplotlib进行训练数据、测试数据的可视化。

python 复制代码
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

总结

经过几次实验,发现三个问题:

1.经过实验,将学习率从0.01改为0.0001,模型效果会好很多。

2.有的时候每轮epoch准确率一直为百分之20多,可能是模型陷入局部最小值或鞍点,所以后续可以引入提前停止。

3.无脑的增加层数并不会使模型效果变好。

相关推荐
m0_751336391 小时前
突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
人工智能·深度学习·量子计算·材料科学·光子器件·光子学·无线电电子
美狐美颜sdk4 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程4 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
郭庆汝4 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
小雷FansUnion6 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周6 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
思则变7 小时前
[Pytest] [Part 2]增加 log功能
开发语言·python·pytest
叶子爱分享7 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜8 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿8 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程