Pytorch从零开始实战------天气识别
本系列来源于365天深度学习训练营
原作者K同学
文章目录
环境准备
本文基于Jupyter notebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。
第一步,导入常用包。
python
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
import torch.nn.functional as F
import torchvision.transforms as transforms
import random
import time
import numpy as np
import pandas as pd
import datetime
import gc
import pathlib
import os
import PIL
os.environ['KMP_DUPLICATE_LIB_OK']='True' # 用于避免jupyter环境突然关闭
torch.backends.cudnn.benchmark=True # 用于加速GPU运算的代码
创建设备对象。
python
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device # device(type='cuda')
设置随机数种子
python
torch.manual_seed(428)
torch.cuda.manual_seed(428)
torch.cuda.manual_seed_all(428)
random.seed(428)
np.random.seed(428)
数据集
本次实验使用的天气图片数据集,共有1127张天气图片,分别存在'cloudy', 'sunrise', 'shine', 'rain'四个文件夹中,其中文件夹名代表类别。数据集获取可联系K同学。
导入数据集。
根据自己数据集存放的路径,转换为pathlib.Path对象,然后获取路径下的所有文件路径,使用字符串分割函数获取文件名,也就是类别名。
python
data_dir = './data/weather_photos'
data_dir = pathlib.Path(data_dir) # 转换为pathlib.Path对象
data_paths = list(data_dir.glob('*')) # 获取data_dir路径下的所有文件路径
data_paths # data/weather_photos/xxxx
classNames = [str(path).split("/")[2] for path in data_paths]
classNames # ['cloudy', 'sunrise', 'shine', 'rain']
对数据集进行预处理。调整到相同的尺寸,转换为张量对象,并进行标准化处理。使用torchvision.datasets.ImageFolder函数读取数据集,并且使用文件名当做数据集的标签。
python
total_dir = './data/weather_photos'
train_transforms = transforms.Compose([
transforms.Resize([224, 224]), # 调整相同的尺寸
transforms.ToTensor(),
transforms.Normalize( # 标准化处理-->转换为标准正太分布
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
total_data = torchvision.datasets.ImageFolder(total_dir, transform=train_transforms) # 通过total_dir下的子文件夹当做标签
total_data
我们根据8:2划分训练集和测试集。
python
# 划分数据集
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_ds, test_ds = torch.utils.data.random_split(total_data, [train_size, test_size])
len(train_ds), len(test_ds) # (901, 226)
又是前面几篇出现的函数,随机查看五张图片。
python
def plotsample(data):
fig, axs = plt.subplots(1, 5, figsize=(10, 10)) #建立子图
for i in range(5):
num = random.randint(0, len(data) - 1) #首先选取随机数,随机选取五次
#抽取数据中对应的图像对象,make_grid函数可将任意格式的图像的通道数升为3,而不改变图像原始的数据
#而展示图像用的imshow函数最常见的输入格式也是3通道
npimg = torchvision.utils.make_grid(data[num][0]).numpy()
nplabel = data[num][1] #提取标签
#将图像由(3, weight, height)转化为(weight, height, 3),并放入imshow函数中读取
axs[i].imshow(np.transpose(npimg, (1, 2, 0)))
axs[i].set_title(nplabel) #给每个子图加上标签
axs[i].axis("off") #消除每个子图的坐标轴
plotsample(train_ds)
使用DataLoder将它按照batch_size批量划分,并将数据集顺序打乱。
python
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_ds, batch_size=batch_size, shuffle=True)
test_dl = torch.utils.data.DataLoader(test_ds, batch_size=batch_size, shuffle=True)
for X, y in test_dl:
print(X.shape) # 32, 3, 224, 224
print(y) # 3 0 2 0 3 2 0 0 2 1....
break
模型选择
本文使用卷积神经网络,大致流程是卷积->卷积->池化->卷积->卷积->池化->线性层,并进行数据归一化处理,本文选用的卷积核大小为5 * 5。
python
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv1 = nn.Conv2d(3, 12, kernel_size=5, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(12)
self.conv2 = nn.Conv2d(12, 12, kernel_size=5, stride=1, padding=0)
self.bn2 = nn.BatchNorm2d(12)
self.pool2 = nn.MaxPool2d(2, 2)
self.conv3 = nn.Conv2d(12, 24, kernel_size=5, stride=1, padding=0)
self.bn3 = nn.BatchNorm2d(24)
self.conv4 = nn.Conv2d(24, 24, kernel_size=5, stride=1, padding=0)
self.bn4 = nn.BatchNorm2d(24)
self.pool4 = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(24 * 50 * 50, len(classNames))
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool2(x)
x = F.relu(self.bn3(self.conv3(x)))
x = F.relu(self.bn4(self.conv4(x)))
x = self.pool4(x)
x = x.view(-1, 24 * 50 * 50)
x = self.fc1(x)
return x
使用summary展示模型架构。
python
from torchsummary import summary
# 将模型转移到GPU中
model = Model().to(device)
summary(model, input_size=(3, 224, 224))
模型训练
定义超参数,本次选择的学习率为0.0001,经实验,最初设置为0.01效果并不是很好。
python
loss_fn = nn.CrossEntropyLoss()
learn_rate = 0.0001
opt = torch.optim.SGD(model.parameters(), lr=learn_rate)
训练函数。
python
def train(dataloader, model, loss_fn, opt):
size = len(dataloader.dataset)
num_batches = len(dataloader)
train_acc, train_loss = 0, 0
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
loss = loss_fn(pred, y)
opt.zero_grad()
loss.backward()
opt.step()
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
测试函数。
python
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
test_acc, test_loss = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
loss = loss_fn(pred, y)
test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss += loss.item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
开始训练,训练20轮,在测试集准确率达到94.7%,还是很不错的。
python
import time
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []
T1 = time.time()
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval() # 确保模型不会进行训练操作
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
print("epoch:%d, train_acc:%.1f%%, train_loss:%.3f, test_acc:%.1f%%, test_loss:%.3f"
% (epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
print("Done")
T2 = time.time()
print('程序运行时间:%s毫秒' % ((T2 - T1)*1000))
数据可视化
使用matplotlib进行训练数据、测试数据的可视化。
python
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
总结
经过几次实验,发现三个问题:
1.经过实验,将学习率从0.01改为0.0001,模型效果会好很多。
2.有的时候每轮epoch准确率一直为百分之20多,可能是模型陷入局部最小值或鞍点,所以后续可以引入提前停止。
3.无脑的增加层数并不会使模型效果变好。