CNN(八):Inception V1算法实战与解析

🍨 本文为🔗365天深度学习训练营 中的学习记录博客

🍖 原作者:K同学啊|接辅导、项目定制

1 Inception V1

Inception v1论文

1.1 理论知识

GoogLeNet首次出现在2014年ILSVRC比赛中获得冠军。这次的版本通常称其为Inception V1。Inception V1有22层深,参数量为5M。同一时期的VGGNet性能和InceptionV1差不多,但是参数量远大于Inception V1.

Inception Module是Inception V1的核心组成单元,提出了卷积层的并行结构,实现了在同一层就可以提取不同的特征,如下图(a)所示。

按照这样的结构来增加网络的深度,虽然可以提升性能,但是还面临计算量大(参数多)的问题。为改善这种现象,Inception Module借鉴Network-in-Network的思想,使用1x1的卷积核实现降维操作(也间接增加了网络的深度),以此来减少网络的参数量与计算量,如上图b所示。

备注举例:假如前一层的输出为100x100x128,经过具有256个5x5卷积核的卷积层之后(stride=1, pad=2), 输出数据为100x100x256.其中,卷积层的参数为5x5x128x256+256。例如上一层输出先经过具有32个1x1卷积核的卷积层(1x1卷积降低了通道数,且特征图尺寸不变),经过具有256个5x5卷积核的卷积层,最终的输出数据仍为100x100x256,但卷积参数量以及减少为(128x1x1x32+32)+(32x5x5x256+256),参数数量减少为原来的约四分之一。其计算量由原先的8.191x10e9,降低至2.048x10e9。

1x1卷积核的作用:1x1卷积核的最大作用是降低输入特征图的通道数,减少 网络的参数量与计算量。

最后Inception Module基本由1x1卷积,3x3卷积,5x5卷积,3x3最大池化四个基本单元组成,对四个基本单元运算结果进行通道上组合,不同大小的卷积核赋予不同大小的感受野,从而提取到图像不同尺度的信息,进行融合,得到图像更好的表征,就是Inception Module的核心思想。

1.2 算法结构

实现的Inception v1网络结构图如下所示:

注: 另外增加了两个辅助分支,作用有两点:

(1)避免梯度消失,用于前向传导梯度。反向传播时,如果有一层求导为0,链式求导结果则为0。

(2)将中间某一层输出用作分类,起到模型融合作用,实际测试时,这两个辅助softmax分支会被去掉。 在后续模型的发展中,该方法采用较少。

详细网络结构图如下所示:

2 代码实现

2.1 开发环境

电脑系统:ubuntu16.04

编译器:Jupter Lab

语言环境:Python 3.7

深度学习环境:Pytorch

2.2 前期准备

2.2.1 设置GPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib, warnings
 
warnings.filterwarnings("ignore")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
print(device)

2.2.2 导入数据

import os,PIL,random,pathlib
data_dir = '../data/4-data/'
data_dir = pathlib.Path(data_dir)
data_dir
 
data_paths = list(data_dir.glob('*'))
classNames = [str(path).split('\\')[-1] for path in data_paths]
print('classNames:', classNames , '\n')

total_dir = '../data/4-data/'
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # resize输入图片
    transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换成tensor
    transforms.Normalize(
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 从数据集中随机抽样计算得到
])
 
total_data = datasets.ImageFolder(total_dir, transform=train_transforms)
print(total_data, '\n')

print(total_data.class_to_idx)

结果如下所示:

2.2.3 划分数据集

train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print(train_dataset, test_dataset)

batch_size = 4
train_dl = torch.utils.data.DataLoader(train_dataset, 
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=1,
                                      pin_memory=False)
test_dl = torch.utils.data.DataLoader(test_dataset, 
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=1,
                                      pin_memory=False)

for X, y in test_dl:
    print("Shape of X [N, C, H, W]:", X.shape)
    print("Shape of y:", y.shape, y.dtype)
    break

结果如下所示:

2.3 Inception的实现

这里去掉了两个辅助分支,直接复现主支。

2.3.1 inception_block

定义一个名为Inception的类,继承自nn.Module。inception_block类包含了Inception V1模型的所有层和参数。

import torch
import torch.nn as nn
import torch.nn.functional as F

class inception_block(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
        super(inception_block, self).__init__()
        
        # 1x1 conv branch
        self.branch1 = nn.Sequential(
            nn.Conv2d(in_channels, ch1x1, kernel_size=1),
            nn.BatchNorm2d(ch1x1),
            nn.ReLU(inplace=True)
        )
        
        # 1x1 conv -> 3x3 conv branch
        self.branch2 = nn.Sequential(
            nn.Conv2d(in_channels, ch3x3red, kernel_size=1),
            nn.BatchNorm2d(ch3x3red),
            nn.ReLU(inplace=True),
            nn.Conv2d(ch3x3red, ch3x3, kernel_size=3, padding=1),
            nn.BatchNorm2d(ch3x3),
            nn.ReLU(inplace=True)
        )
                
        # 1x1 conv -> 5x5 conv branch
        self.branch3 = nn.Sequential(
            nn.Conv2d(in_channels, ch5x5red, kernel_size=1),
            nn.BatchNorm2d(ch5x5red),
            nn.ReLU(inplace=True),
            nn.Conv2d(ch5x5red, ch5x5, kernel_size=5, padding=2),
            nn.BatchNorm2d(ch5x5),
            nn.ReLU(inplace=True)
        )
        
        # 3x3 max pooling -> 1x1 conv branch
        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            nn.Conv2d(in_channels, pool_proj, kernel_size=1),
            nn.BatchNorm2d(pool_proj),
            nn.ReLU(inplace=True)
        )
        
    def forward(self, x):
        # compute forward pass through all branches 
        # and concatenate the outout feature maps
        branch1_output = self.branch1(x)
        branch2_output = self.branch2(x)
        branch3_output = self.branch3(x)
        branch4_output = self.branch4(x)
        
        outputs = [branch1_output, branch2_output, branch3_output, branch4_output]
        return torch.cat(outputs, 1)

在__init__方法中,我们定义了四个分支,分别是:

(1) branch1:一个1x1卷积层;

(2) branch2:一个1x1卷积层+一个3x3卷积层;

(3) branch3:一个1x1卷积层+5x5卷积层;

(4) branch4:一个3x3最大池化层+一个1x1卷积层;

每个分支都包含了一些卷积层、批归一化层和激活函数。这些层都是PyTorch中的标准层,我们可以使用nn.Conv2d、nn.BatchNorm2d和nn.ReLU分别定义卷积层、批归一化层和ReLU激活函数。

在forward方法中,我们计算从输入到所有分支的前向传递,并将所有分支的特征图拼接在一起。最后,我们返回拼接后的特征图。

2.3.2 Inception v1

下面定义Inception v1模型,使用nn.ModuleList和nn.Sequential组合多个Inception模块和其他层。

class InceptionV1(nn.Module):
    def __init__(self, num_classes=4):
        super(InceptionV1, self).__init__()
        
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.conv2 = nn.Conv2d(64, 64, kernel_size=1, stride=1, padding=0)
        self.conv3 = nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1)
        self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        
        self.inception3a = inception_block(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = inception_block(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
                               
        self.inception4a = inception_block(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = inception_block(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = inception_block(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = inception_block(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = inception_block(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
                                                           
        self.inception5a = inception_block(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = nn.Sequential(
            inception_block(832, 384, 192, 384, 48, 128, 128),
            nn.AvgPool2d(kernel_size=7, stride=1, padding=0),
            nn.Dropout(0.4)
        )
                               
        # 全连接网络层,用于分类
        self.classifier = nn.Sequential(
            nn.Linear(in_features=1024, out_features=1024),
            nn.ReLU(),
            nn.Linear(in_features=1024, out_features=num_classes),
            nn.Softmax(dim=1)
        )
                               
    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.conv3(x)
        x = F.relu(x)
        x = self.maxpool2(x)
        
        x = self.inception3a(x)
        x = self.inception3b(x)
        x = self.maxpool3(x)
        
        x = self.inception4a(x)
        x = self.inception4b(x)
        x = self.inception4c(x)
        x = self.inception4d(x)
        x = self.inception4e(x)
        x = self.maxpool4(x)
        
        x = self.inception5a(x)
        x = self.inception5b(x)
        
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)
        
        return x

2.3.3 输出模型结构

# 统计模型参数量以及其他指标
import torchsummary

# 调用并将模型转移到GPU中
model = InceptionV1().to(device)

# 显示网络结构
torchsummary.summary(model, (3, 224, 224))
print(model)

输出如下所示

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 112, 112]           9,472
         MaxPool2d-2           [-1, 64, 56, 56]               0
            Conv2d-3           [-1, 64, 56, 56]           4,160
            Conv2d-4          [-1, 192, 56, 56]         110,784
         MaxPool2d-5          [-1, 192, 28, 28]               0
            Conv2d-6           [-1, 64, 28, 28]          12,352
       BatchNorm2d-7           [-1, 64, 28, 28]             128
              ReLU-8           [-1, 64, 28, 28]               0
            Conv2d-9           [-1, 96, 28, 28]          18,528
      BatchNorm2d-10           [-1, 96, 28, 28]             192
             ReLU-11           [-1, 96, 28, 28]               0
           Conv2d-12          [-1, 128, 28, 28]         110,720
      BatchNorm2d-13          [-1, 128, 28, 28]             256
             ReLU-14          [-1, 128, 28, 28]               0
           Conv2d-15           [-1, 16, 28, 28]           3,088
      BatchNorm2d-16           [-1, 16, 28, 28]              32
             ReLU-17           [-1, 16, 28, 28]               0
           Conv2d-18           [-1, 32, 28, 28]          12,832
      BatchNorm2d-19           [-1, 32, 28, 28]              64
             ReLU-20           [-1, 32, 28, 28]               0
        MaxPool2d-21          [-1, 192, 28, 28]               0
           Conv2d-22           [-1, 32, 28, 28]           6,176
      BatchNorm2d-23           [-1, 32, 28, 28]              64
             ReLU-24           [-1, 32, 28, 28]               0
  inception_block-25          [-1, 256, 28, 28]               0
           Conv2d-26          [-1, 128, 28, 28]          32,896
      BatchNorm2d-27          [-1, 128, 28, 28]             256
             ReLU-28          [-1, 128, 28, 28]               0
           Conv2d-29          [-1, 128, 28, 28]          32,896
      BatchNorm2d-30          [-1, 128, 28, 28]             256
             ReLU-31          [-1, 128, 28, 28]               0
           Conv2d-32          [-1, 192, 28, 28]         221,376
      BatchNorm2d-33          [-1, 192, 28, 28]             384
             ReLU-34          [-1, 192, 28, 28]               0
           Conv2d-35           [-1, 32, 28, 28]           8,224
      BatchNorm2d-36           [-1, 32, 28, 28]              64
             ReLU-37           [-1, 32, 28, 28]               0
           Conv2d-38           [-1, 96, 28, 28]          76,896
      BatchNorm2d-39           [-1, 96, 28, 28]             192
             ReLU-40           [-1, 96, 28, 28]               0
        MaxPool2d-41          [-1, 256, 28, 28]               0
           Conv2d-42           [-1, 64, 28, 28]          16,448
      BatchNorm2d-43           [-1, 64, 28, 28]             128
             ReLU-44           [-1, 64, 28, 28]               0
  inception_block-45          [-1, 480, 28, 28]               0
        MaxPool2d-46          [-1, 480, 14, 14]               0
           Conv2d-47          [-1, 192, 14, 14]          92,352
      BatchNorm2d-48          [-1, 192, 14, 14]             384
             ReLU-49          [-1, 192, 14, 14]               0
           Conv2d-50           [-1, 96, 14, 14]          46,176
      BatchNorm2d-51           [-1, 96, 14, 14]             192
             ReLU-52           [-1, 96, 14, 14]               0
           Conv2d-53          [-1, 208, 14, 14]         179,920
      BatchNorm2d-54          [-1, 208, 14, 14]             416
             ReLU-55          [-1, 208, 14, 14]               0
           Conv2d-56           [-1, 16, 14, 14]           7,696
      BatchNorm2d-57           [-1, 16, 14, 14]              32
             ReLU-58           [-1, 16, 14, 14]               0
           Conv2d-59           [-1, 48, 14, 14]          19,248
      BatchNorm2d-60           [-1, 48, 14, 14]              96
             ReLU-61           [-1, 48, 14, 14]               0
        MaxPool2d-62          [-1, 480, 14, 14]               0
           Conv2d-63           [-1, 64, 14, 14]          30,784
      BatchNorm2d-64           [-1, 64, 14, 14]             128
             ReLU-65           [-1, 64, 14, 14]               0
  inception_block-66          [-1, 512, 14, 14]               0
           Conv2d-67          [-1, 160, 14, 14]          82,080
      BatchNorm2d-68          [-1, 160, 14, 14]             320
             ReLU-69          [-1, 160, 14, 14]               0
           Conv2d-70          [-1, 112, 14, 14]          57,456
      BatchNorm2d-71          [-1, 112, 14, 14]             224
             ReLU-72          [-1, 112, 14, 14]               0
           Conv2d-73          [-1, 224, 14, 14]         226,016
      BatchNorm2d-74          [-1, 224, 14, 14]             448
             ReLU-75          [-1, 224, 14, 14]               0
           Conv2d-76           [-1, 24, 14, 14]          12,312
      BatchNorm2d-77           [-1, 24, 14, 14]              48
             ReLU-78           [-1, 24, 14, 14]               0
           Conv2d-79           [-1, 64, 14, 14]          38,464
      BatchNorm2d-80           [-1, 64, 14, 14]             128
             ReLU-81           [-1, 64, 14, 14]               0
        MaxPool2d-82          [-1, 512, 14, 14]               0
           Conv2d-83           [-1, 64, 14, 14]          32,832
      BatchNorm2d-84           [-1, 64, 14, 14]             128
             ReLU-85           [-1, 64, 14, 14]               0
  inception_block-86          [-1, 512, 14, 14]               0
           Conv2d-87          [-1, 128, 14, 14]          65,664
      BatchNorm2d-88          [-1, 128, 14, 14]             256
             ReLU-89          [-1, 128, 14, 14]               0
           Conv2d-90          [-1, 128, 14, 14]          65,664
      BatchNorm2d-91          [-1, 128, 14, 14]             256
             ReLU-92          [-1, 128, 14, 14]               0
           Conv2d-93          [-1, 256, 14, 14]         295,168
      BatchNorm2d-94          [-1, 256, 14, 14]             512
             ReLU-95          [-1, 256, 14, 14]               0
           Conv2d-96           [-1, 24, 14, 14]          12,312
      BatchNorm2d-97           [-1, 24, 14, 14]              48
             ReLU-98           [-1, 24, 14, 14]               0
           Conv2d-99           [-1, 64, 14, 14]          38,464
     BatchNorm2d-100           [-1, 64, 14, 14]             128
            ReLU-101           [-1, 64, 14, 14]               0
       MaxPool2d-102          [-1, 512, 14, 14]               0
          Conv2d-103           [-1, 64, 14, 14]          32,832
     BatchNorm2d-104           [-1, 64, 14, 14]             128
            ReLU-105           [-1, 64, 14, 14]               0
 inception_block-106          [-1, 512, 14, 14]               0
          Conv2d-107          [-1, 112, 14, 14]          57,456
     BatchNorm2d-108          [-1, 112, 14, 14]             224
            ReLU-109          [-1, 112, 14, 14]               0
          Conv2d-110          [-1, 144, 14, 14]          73,872
     BatchNorm2d-111          [-1, 144, 14, 14]             288
            ReLU-112          [-1, 144, 14, 14]               0
          Conv2d-113          [-1, 288, 14, 14]         373,536
     BatchNorm2d-114          [-1, 288, 14, 14]             576
            ReLU-115          [-1, 288, 14, 14]               0
          Conv2d-116           [-1, 32, 14, 14]          16,416
     BatchNorm2d-117           [-1, 32, 14, 14]              64
            ReLU-118           [-1, 32, 14, 14]               0
          Conv2d-119           [-1, 64, 14, 14]          51,264
     BatchNorm2d-120           [-1, 64, 14, 14]             128
            ReLU-121           [-1, 64, 14, 14]               0
       MaxPool2d-122          [-1, 512, 14, 14]               0
          Conv2d-123           [-1, 64, 14, 14]          32,832
     BatchNorm2d-124           [-1, 64, 14, 14]             128
            ReLU-125           [-1, 64, 14, 14]               0
 inception_block-126          [-1, 528, 14, 14]               0
          Conv2d-127          [-1, 256, 14, 14]         135,424
     BatchNorm2d-128          [-1, 256, 14, 14]             512
            ReLU-129          [-1, 256, 14, 14]               0
          Conv2d-130          [-1, 160, 14, 14]          84,640
     BatchNorm2d-131          [-1, 160, 14, 14]             320
            ReLU-132          [-1, 160, 14, 14]               0
          Conv2d-133          [-1, 320, 14, 14]         461,120
     BatchNorm2d-134          [-1, 320, 14, 14]             640
            ReLU-135          [-1, 320, 14, 14]               0
          Conv2d-136           [-1, 32, 14, 14]          16,928
     BatchNorm2d-137           [-1, 32, 14, 14]              64
            ReLU-138           [-1, 32, 14, 14]               0
          Conv2d-139          [-1, 128, 14, 14]         102,528
     BatchNorm2d-140          [-1, 128, 14, 14]             256
            ReLU-141          [-1, 128, 14, 14]               0
       MaxPool2d-142          [-1, 528, 14, 14]               0
          Conv2d-143          [-1, 128, 14, 14]          67,712
     BatchNorm2d-144          [-1, 128, 14, 14]             256
            ReLU-145          [-1, 128, 14, 14]               0
 inception_block-146          [-1, 832, 14, 14]               0
       MaxPool2d-147            [-1, 832, 7, 7]               0
          Conv2d-148            [-1, 256, 7, 7]         213,248
     BatchNorm2d-149            [-1, 256, 7, 7]             512
            ReLU-150            [-1, 256, 7, 7]               0
          Conv2d-151            [-1, 160, 7, 7]         133,280
     BatchNorm2d-152            [-1, 160, 7, 7]             320
            ReLU-153            [-1, 160, 7, 7]               0
          Conv2d-154            [-1, 320, 7, 7]         461,120
     BatchNorm2d-155            [-1, 320, 7, 7]             640
            ReLU-156            [-1, 320, 7, 7]               0
          Conv2d-157             [-1, 32, 7, 7]          26,656
     BatchNorm2d-158             [-1, 32, 7, 7]              64
            ReLU-159             [-1, 32, 7, 7]               0
          Conv2d-160            [-1, 128, 7, 7]         102,528
     BatchNorm2d-161            [-1, 128, 7, 7]             256
            ReLU-162            [-1, 128, 7, 7]               0
       MaxPool2d-163            [-1, 832, 7, 7]               0
          Conv2d-164            [-1, 128, 7, 7]         106,624
     BatchNorm2d-165            [-1, 128, 7, 7]             256
            ReLU-166            [-1, 128, 7, 7]               0
 inception_block-167            [-1, 832, 7, 7]               0
          Conv2d-168            [-1, 384, 7, 7]         319,872
     BatchNorm2d-169            [-1, 384, 7, 7]             768
            ReLU-170            [-1, 384, 7, 7]               0
          Conv2d-171            [-1, 192, 7, 7]         159,936
     BatchNorm2d-172            [-1, 192, 7, 7]             384
            ReLU-173            [-1, 192, 7, 7]               0
          Conv2d-174            [-1, 384, 7, 7]         663,936
     BatchNorm2d-175            [-1, 384, 7, 7]             768
            ReLU-176            [-1, 384, 7, 7]               0
          Conv2d-177             [-1, 48, 7, 7]          39,984
     BatchNorm2d-178             [-1, 48, 7, 7]              96
            ReLU-179             [-1, 48, 7, 7]               0
          Conv2d-180            [-1, 128, 7, 7]         153,728
     BatchNorm2d-181            [-1, 128, 7, 7]             256
            ReLU-182            [-1, 128, 7, 7]               0
       MaxPool2d-183            [-1, 832, 7, 7]               0
          Conv2d-184            [-1, 128, 7, 7]         106,624
     BatchNorm2d-185            [-1, 128, 7, 7]             256
            ReLU-186            [-1, 128, 7, 7]               0
 inception_block-187           [-1, 1024, 7, 7]               0
       AvgPool2d-188           [-1, 1024, 1, 1]               0
         Dropout-189           [-1, 1024, 1, 1]               0
          Linear-190                 [-1, 1024]       1,049,600
            ReLU-191                 [-1, 1024]               0
          Linear-192                    [-1, 4]           4,100
         Softmax-193                    [-1, 4]               0
================================================================
Total params: 7,041,172
Trainable params: 7,041,172
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 69.61
Params size (MB): 26.86
Estimated Total Size (MB): 97.05
----------------------------------------------------------------
InceptionV1(
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3))
  (maxpool1): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (conv2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
  (conv3): Conv2d(64, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (maxpool2): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (inception3a): inception_block(
    (branch1): Sequential(
      (0): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (branch2): Sequential(
      (0): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
      (3): Conv2d(96, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (5): ReLU(inplace=True)
    )
    (branch3): Sequential(
      (0): Conv2d(192, 16, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
      (3): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
      (4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (5): ReLU(inplace=True)
    )
    (branch4): Sequential(
      (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
      (1): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1))
      (2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (3): ReLU(inplace=True)
    )
  )
  (inception3b): inception_block(
    (branch1): Sequential(
      (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (branch2): Sequential(
      (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
      (3): Conv2d(128, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (4): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (5): ReLU(inplace=True)
    )
    (branch3): Sequential(
      (0): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
      (3): Conv2d(32, 96, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
      (4): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (5): ReLU(inplace=True)
    )
    (branch4): Sequential(
      (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
      (1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
      (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (3): ReLU(inplace=True)
    )
  )
  (maxpool3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (inception4a): inception_block(
    (branch1): Sequential(
      (0): Conv2d(480, 192, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (branch2): Sequential(
      (0): Conv2d(480, 96, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
      (3): Conv2d(96, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (4): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (5): ReLU(inplace=True)
    )
    (branch3): Sequential(
      (0): Conv2d(480, 16, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
      (3): Conv2d(16, 48, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
      (4): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (5): ReLU(inplace=True)
    )
    (branch4): Sequential(
      (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
      (1): Conv2d(480, 64, kernel_size=(1, 1), stride=(1, 1))
      (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (3): ReLU(inplace=True)
    )
  )
  (inception4b): inception_block(
    (branch1): Sequential(
      (0): Conv2d(512, 160, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (branch2): Sequential(
      (0): Conv2d(512, 112, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(112, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
      (3): Conv2d(112, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (4): BatchNorm2d(224, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (5): ReLU(inplace=True)
    )
    (branch3): Sequential(
      (0): Conv2d(512, 24, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
      (3): Conv2d(24, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
      (4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (5): ReLU(inplace=True)
    )
    (branch4): Sequential(
      (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
      (1): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1))
      (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (3): ReLU(inplace=True)
    )
  )
  (inception4c): inception_block(
    (branch1): Sequential(
      (0): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (branch2): Sequential(
      (0): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
      (3): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (5): ReLU(inplace=True)
    )
    (branch3): Sequential(
      (0): Conv2d(512, 24, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
      (3): Conv2d(24, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
      (4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (5): ReLU(inplace=True)
    )
    (branch4): Sequential(
      (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
      (1): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1))
      (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (3): ReLU(inplace=True)
    )
  )
  (inception4d): inception_block(
    (branch1): Sequential(
      (0): Conv2d(512, 112, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(112, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (branch2): Sequential(
      (0): Conv2d(512, 144, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
      (3): Conv2d(144, 288, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (4): BatchNorm2d(288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (5): ReLU(inplace=True)
    )
    (branch3): Sequential(
      (0): Conv2d(512, 32, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
      (3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
      (4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (5): ReLU(inplace=True)
    )
    (branch4): Sequential(
      (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
      (1): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1))
      (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (3): ReLU(inplace=True)
    )
  )
  (inception4e): inception_block(
    (branch1): Sequential(
      (0): Conv2d(528, 256, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (branch2): Sequential(
      (0): Conv2d(528, 160, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
      (3): Conv2d(160, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (4): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (5): ReLU(inplace=True)
    )
    (branch3): Sequential(
      (0): Conv2d(528, 32, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
      (3): Conv2d(32, 128, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
      (4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (5): ReLU(inplace=True)
    )
    (branch4): Sequential(
      (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
      (1): Conv2d(528, 128, kernel_size=(1, 1), stride=(1, 1))
      (2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (3): ReLU(inplace=True)
    )
  )
  (maxpool4): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (inception5a): inception_block(
    (branch1): Sequential(
      (0): Conv2d(832, 256, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (branch2): Sequential(
      (0): Conv2d(832, 160, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
      (3): Conv2d(160, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (4): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (5): ReLU(inplace=True)
    )
    (branch3): Sequential(
      (0): Conv2d(832, 32, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
      (3): Conv2d(32, 128, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
      (4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (5): ReLU(inplace=True)
    )
    (branch4): Sequential(
      (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
      (1): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1))
      (2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (3): ReLU(inplace=True)
    )
  )
  (inception5b): Sequential(
    (0): inception_block(
      (branch1): Sequential(
        (0): Conv2d(832, 384, kernel_size=(1, 1), stride=(1, 1))
        (1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU(inplace=True)
      )
      (branch2): Sequential(
        (0): Conv2d(832, 192, kernel_size=(1, 1), stride=(1, 1))
        (1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU(inplace=True)
        (3): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (4): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (5): ReLU(inplace=True)
      )
      (branch3): Sequential(
        (0): Conv2d(832, 48, kernel_size=(1, 1), stride=(1, 1))
        (1): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU(inplace=True)
        (3): Conv2d(48, 128, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
        (4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (5): ReLU(inplace=True)
      )
      (branch4): Sequential(
        (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
        (1): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1))
        (2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (3): ReLU(inplace=True)
      )
    )
    (1): AvgPool2d(kernel_size=7, stride=1, padding=0)
    (2): Dropout(p=0.4, inplace=False)
  )
  (classifier): Sequential(
    (0): Linear(in_features=1024, out_features=1024, bias=True)
    (1): ReLU()
    (2): Linear(in_features=1024, out_features=4, bias=True)
    (3): Softmax(dim=1)
  )
)

2.4 训练模型

2.4.1 编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)
 
    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出pred和真实值y之间的差距,y为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches
 
    return train_acc, train_loss

2.4.2 编写测试函数

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0  # 初始化测试损失和正确率
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
   # with torch.no_grad():
    for imgs, target in dataloader:  # 获取图片及其标签
        with torch.no_grad():
            imgs, target = imgs.to(device), target.to(device)
        
            # 计算误差
            tartget_pred = model(imgs)          # 网络输出
            loss = loss_fn(tartget_pred, target)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
            # 记录acc与loss
            test_loss += loss.item()
            test_acc  += (tartget_pred.argmax(1) == target).type(torch.float).sum().item()
            
    test_acc  /= size
    test_loss /= num_batches
 
    return test_acc, test_loss

2.4.3 正式训练

import copy

optimizer = torch.optim.Adam(model.parameters(), lr = 1e-4)
loss_fn = nn.CrossEntropyLoss() #创建损失函数

epochs = 40

train_loss = []
train_acc = []
test_loss = []
test_acc = []

best_acc = 0 #设置一个最佳准确率,作为最佳模型的判别指标

if hasattr(torch.cuda, 'empty_cache'):
    torch.cuda.empty_cache()


for epoch in range(epochs):
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    #scheduler.step() #更新学习率(调用官方动态学习率接口时使用)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    #保存最佳模型到best_model
    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    #获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    template = ('Epoch: {:2d}. Train_acc: {:.1f}%, Train_loss: {:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr: {:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))

PATH = './J7_best_model.pth'
torch.save(model.state_dict(), PATH)


print('Done')

输出结果如下所示:

2.5 结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率
 
epochs_range = range(epochs)
 
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
 
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
 
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

输出结果显示如下:

3 总结

大部分流行的CNN是将网络的卷积层堆叠的越来越多,网络越来越深,同时channel越来越宽,网络越来越宽,以此来希望提取更高层的特征,从而得到更好的性能。但单纯的网络堆叠和加宽会带来副作用,包括梯度爆炸和数据量剧增而导致的训练困难的问题等。而Inception的提出,改善了此种现象。

Inception是用多路分支来并行采用不同的卷积核大小,来提取不同大小感受野所代表的特征。这种分支结构,将单路改变为多路,并行计算,使得网络运行速度更快。而不同大小的卷积核,则代表在不同大小感受野的范围内提取的特征,使得网络可以同时"看到"该位置不同范围的特征,通过后续的concate操作,将不同大小感受野的特征融合起来,综合该位置不同范围的特征。其解读思想更接近于人类的解读方式。

同时,为减少参数量,在分支中,使用1x1卷积将channel维度进行降维,提取特征后再次使用1x1卷积进行channel维度的回升,看似繁琐,却将参数量大大降低。而且,这样的操作,也在无形中增加了网络的深度,提取了更高维的特征。这种降维操作类似于将一个大矩阵转化为一个小矩阵,转化的过程中会提取大矩阵的"精华",去除冗余信息。而升维操作则类似于将小矩阵又转化为原始大小的大矩阵,方便不同分支的特征融合。

相关推荐
是十一月末5 分钟前
Opencv实现图片的边界填充和阈值处理
人工智能·python·opencv·计算机视觉
机智的叉烧38 分钟前
前沿重器[57] | sigir24:大模型推荐系统的文本ID对齐学习
人工智能·学习·机器学习
凳子花❀41 分钟前
强化学习与深度学习以及相关芯片之间的区别
人工智能·深度学习·神经网络·ai·强化学习
泰迪智能科技012 小时前
高校深度学习视觉应用平台产品介绍
人工智能·深度学习
盛派网络小助手3 小时前
微信 SDK 更新 Sample,NCF 文档和模板更新,更多更新日志,欢迎解锁
开发语言·人工智能·后端·架构·c#
Eric.Lee20213 小时前
Paddle OCR 中英文检测识别 - python 实现
人工智能·opencv·计算机视觉·ocr检测
cd_farsight3 小时前
nlp初学者怎么入门?需要学习哪些?
人工智能·自然语言处理
AI明说3 小时前
评估大语言模型在药物基因组学问答任务中的表现:PGxQA
人工智能·语言模型·自然语言处理·数智药师·数智药学
Focus_Liu4 小时前
NLP-UIE(Universal Information Extraction)
人工智能·自然语言处理