Llama-2 推理和微调的硬件要求总结:RTX 3080 就可以微调最小模型

大语言模型微调是指对已经预训练的大型语言模型(例如Llama-2,Falcon等)进行额外的训练,以使其适应特定任务或领域的需求。微调通常需要大量的计算资源,但是通过量化和Lora等方法,我们也可以在消费级的GPU上来微调测试,但是消费级GPU也无法承载比较大的模型,经过我的测试,7B的模型可以在3080(8G)上跑起来,这对于我们进行简单的研究是非常有帮助的,但是如果需要更深入的研究,还是需要专业的硬件。

我们先看看硬件配置:

亚马逊的g3.xlarge M60是8GB的VRAM和2048个CUDA内核。3080是10Gb的GDDR6 VRAM,这两个GPU基本类似。

这里做的测试是使用一个小的(65MB文本)自定义数据集上微调lama-2 - 7b (~7GB)。

可以看到3080非常耗电,训练时最大耗电364瓦(PC总耗电超过500瓦)。

看看训练的记录

说明训练是ok的,能够完整的进行训练

为了验证内存消耗,我又在8G 的M60上跑了一遍,也是没问题的,这应该是GPU内存的极限了。

占用的差不多7.1G的内存,再多一些可能就不行了,不过还好,将就够用。

最后我们再整理个列表,大概看看各个模型都需要什么样的内存,以下只是推理,不包括微调,如果使用微调,大概需要再加20%(LORA)。

LLaMA-7B

建议使用至少6GB VRAM的GPU。适合此模型的GPU示例是RTX 3060,它提供8GB VRAM版本。

LLaMA-13B

建议使用至少10GB VRAM的GPU。满足此要求的gpu包括AMD 6900 XT、RTX 2060 12GB、3060 12GB、3080和A2000。这些gpu提供了必要的VRAM容量来有效地处理LLaMA-13B的计算需求。

LLaMA-30B

建议使用VRAM不低于20GB的GPU。RTX 3080 20GB、A4500、A5000、3090、4090、6000或Tesla V100都是提供所需VRAM容量的gpu示例。这些gpu为LLaMA-30B提供了高效的处理和内存管理。

LLaMA-65B

LLaMA-65B在与至少具有40GB VRAM的GPU。适合此型号的gpu示例包括A100 40GB, 2x3090, 2x4090, A40, RTX A6000或8000。

对于速度来说:

我是用RTX 4090和Intel i9-12900K CPU的推理速度示例

对于CPU来说,LLaMA也是可以用的,但是速度会很慢,而且最好不要进行训练,只能进行推理,下面是,13B模型在不同CPU上推理速度列表

各个系统的配置和性能可能会有所不同。最好对不同的设置进行实验和基准测试,以找到最适合您特定需求的解决方案,上面的测试仅供参考。

https://avoid.overfit.cn/post/0dd29b9a89514a988ae54694dccc9fa6

相关推荐
慎独41318 小时前
政策东风起,财富新赛道:绿色积分与消费商引领新型消费革命
人工智能
CICI1314141318 小时前
自动化焊接机器人厂家哪家好?
人工智能·机器人·自动化
wanzhong233318 小时前
CUDA学习5-矩阵乘法(共享内存版)
深度学习·学习·算法·cuda·高性能计算
ZzzZ3141592618 小时前
【无标题】
人工智能
Hcoco_me18 小时前
大模型面试题19:梯度消失&梯度爆炸 纯白话文版
人工智能·rnn·深度学习·自然语言处理·word2vec
哈__18 小时前
CodeLlama与昇腾NPU的实践之旅
人工智能·gitcode·sglang
GMICLOUD19 小时前
GMI Cloud@AI周报 | MiniMax 叩响港股大门;智谱 GLM-4.7 开源
人工智能·ai资讯
0x000719 小时前
进击的智谱 - GLM 4.7 双旦大礼
人工智能
_codemonster19 小时前
AI大模型入门到实战系列--使用Pytorch实现transformer文本分类
人工智能·pytorch·transformer
Elastic 中国社区官方博客19 小时前
Elasticsearch:在 X-mas 吃一些更健康的东西
android·大数据·数据库·人工智能·elasticsearch·搜索引擎·全文检索