【深度学习 AIGC】stablediffusion-infinity 在无界限画布中输出绘画 Outpainting

代码:https://github.com/lkwq007/stablediffusion-infinity/tree/master

启动环境:

shell 复制代码
git clone --recurse-submodules https://github.com/lkwq007/stablediffusion-infinity
cd stablediffusion-infinity
conda env create -f environment.yml
conda activate sd-inf

# 一定更新一下!
conda install -c conda-forge diffusers transformers ftfy accelerate
conda update -c conda-forge diffusers transformers ftfy accelerate
pip install -U gradio

python app.py

修改了一下app.py的东西,最后面修改了ip和端口:

css 复制代码
launch_extra_kwargs = {
    "show_error": True,
    # "favicon_path": ""
}
launch_kwargs = vars(args)
launch_kwargs = {k: v for k, v in launch_kwargs.items() if v is not None}
print(launch_kwargs)
launch_kwargs.pop("remote_model", None)
launch_kwargs.pop("local_model", None)
launch_kwargs.pop("fp32", None)
launch_kwargs.pop("lowvram", None)
launch_kwargs.update(launch_extra_kwargs)
try:
    import google.colab

    launch_kwargs["debug"] = True
except:
    pass

if RUN_IN_SPACE:
    print("run in space")
    demo.launch()
elif args.debug:
    print(111111111)
    launch_kwargs["share"]=True
    launch_kwargs["server_name"] = "0.0.0.0"
    launch_kwargs["server_port"] = 8000
    demo.queue().launch(**launch_kwargs)
else:
    print(222222222)
    launch_kwargs["share"]=True
    launch_kwargs["server_name"] = "0.0.0.0"
    launch_kwargs["server_port"] = 8000
    demo.queue().launch(**launch_kwargs)

可以对照一下环境:

shell 复制代码
(sd-inf)   Thu Sep 14    20:59:37    /ssd/xiedong/stablediffusion-infinity  pip list
Package                       Version
----------------------------- ---------
absl-py                       1.3.0
accelerate                    0.22.0
aiofiles                      23.2.1
aiohttp                       3.8.1
aiosignal                     1.3.1
altair                        5.1.1
antlr4-python3-runtime        4.9.3
anyio                         3.6.2
async-timeout                 4.0.2
attrs                         23.1.0
backports.functools-lru-cache 1.6.4
bcrypt                        4.0.1
brotlipy                      0.7.0
cachetools                    5.2.0
certifi                       2023.7.22
cffi                          1.15.1
charset-normalizer            2.0.4
click                         8.1.3
cloudpickle                   2.0.0
cmake                         3.25.0
colorama                      0.4.6
commonmark                    0.9.1
contourpy                     1.0.6
cryptography                  38.0.1
cycler                        0.11.0
cytoolz                       0.12.0
dask                          2022.7.0
dataclasses                   0.8
datasets                      2.7.0
diffusers                     0.14.0
dill                          0.3.6
einops                        0.4.1
fastapi                       0.87.0
ffmpy                         0.3.0
filelock                      3.8.0
fonttools                     4.38.0
fpie                          0.2.4
frozenlist                    1.3.0
fsspec                        2022.10.0
ftfy                          6.1.1
google-auth                   2.14.1
google-auth-oauthlib          0.4.6
gradio                        3.44.2
gradio_client                 0.5.0
grpcio                        1.51.0
h11                           0.12.0
httpcore                      0.15.0
httpx                         0.23.1
huggingface-hub               0.17.1
idna                          3.4
imagecodecs                   2021.8.26
imageio                       2.19.3
importlib-metadata            5.0.0
importlib-resources           6.0.1
Jinja2                        3.1.2
joblib                        1.2.0
jsonschema                    4.19.0
jsonschema-specifications     2023.7.1
kiwisolver                    1.4.4
linkify-it-py                 1.0.3
llvmlite                      0.39.1
locket                        1.0.0
Markdown                      3.4.1
markdown-it-py                2.1.0
MarkupSafe                    2.1.1
matplotlib                    3.6.2
mdit-py-plugins               0.3.1
mdurl                         0.1.2
mkl-fft                       1.3.1
mkl-random                    1.2.2
mkl-service                   2.4.0
multidict                     6.0.2
multiprocess                  0.70.12.2
networkx                      2.8.4
numba                         0.56.4
numpy                         1.23.4
oauthlib                      3.2.2
omegaconf                     2.2.3
opencv-python                 4.6.0.66
opencv-python-headless        4.6.0.66
orjson                        3.8.2
packaging                     21.3
pandas                        1.4.2
paramiko                      2.12.0
partd                         1.2.0
Pillow                        9.2.0
pip                           22.2.2
protobuf                      3.20.3
psutil                        5.9.1
pyarrow                       8.0.0
pyasn1                        0.4.8
pyasn1-modules                0.2.8
pycparser                     2.21
pycryptodome                  3.15.0
pydantic                      1.10.2
pyDeprecate                   0.3.2
pydub                         0.25.1
Pygments                      2.13.0
PyNaCl                        1.5.0
pyOpenSSL                     22.0.0
pyparsing                     3.0.9
PySocks                       1.7.1
python-dateutil               2.8.2
python-multipart              0.0.5
pytorch-lightning             1.7.7
pytz                          2022.6
PyWavelets                    1.3.0
PyYAML                        6.0
referencing                   0.30.2
regex                         2022.4.24
requests                      2.28.1
requests-oauthlib             1.3.1
responses                     0.18.0
rfc3986                       1.5.0
rich                          12.6.0
rpds-py                       0.10.3
rsa                           4.9
sacremoses                    0.0.53
safetensors                   0.3.2
scikit-image                  0.19.2
scipy                         1.9.3
semantic-version              2.10.0
setuptools                    65.5.0
six                           1.16.0
sniffio                       1.3.0
sourceinspect                 0.0.4
starlette                     0.21.0
taichi                        1.2.2
tensorboard                   2.11.0
tensorboard-data-server       0.6.1
tensorboard-plugin-wit        1.8.1
tifffile                      2021.7.2
timm                          0.6.11
tokenizers                    0.11.4
toolz                         0.12.0
torch                         1.13.0
torchaudio                    0.13.0
torchmetrics                  0.10.3
torchvision                   0.14.0
tqdm                          4.64.1
transformers                  4.33.1
typing_extensions             4.3.0
uc-micro-py                   1.0.1
urllib3                       1.26.12
uvicorn                       0.20.0
wcwidth                       0.2.5
websockets                    10.4
Werkzeug                      2.2.2
wheel                         0.37.1
xxhash                        0.0.0
yarl                          1.7.2
zipp                          3.10.0

路径下建立一个stabilityai,然后下载stable-diffusion-2-inpainting放进去,sd-vae-ft-mse是stable-diffusion-2-inpainting/vae里的东西复制了一遍。

shell 复制代码
(sd-inf)   Thu Sep 14    21:00:31    /ssd/xiedong/stablediffusion-infinity  tree stabilityai/
stabilityai/
├── sd-vae-ft-mse
│   ├── config.json
│   ├── diffusion_pytorch_model.bin
│   ├── diffusion_pytorch_model.fp16.bin
│   ├── diffusion_pytorch_model.fp16.safetensors
│   └── diffusion_pytorch_model.safetensors
└── stable-diffusion-2-inpainting
    ├── 512-inpainting-ema.ckpt
    ├── 512-inpainting-ema.safetensors
    ├── feature_extractor
    │   └── preprocessor_config.json
    ├── merged-leopards.png
    ├── model_index.json
    ├── README.md
    ├── scheduler
    │   └── scheduler_config.json
    ├── sd-vae-ft-mse-original
    │   ├── README.md
    │   ├── vae-ft-mse-840000-ema-pruned.ckpt
    │   └── vae-ft-mse-840000-ema-pruned.safetensors
    ├── text_encoder
    │   ├── config.json
    │   ├── model.fp16.safetensors
    │   ├── model.safetensors
    │   ├── pytorch_model.bin
    │   └── pytorch_model.fp16.bin
    ├── tokenizer
    │   ├── merges.txt
    │   ├── special_tokens_map.json
    │   ├── tokenizer_config.json
    │   └── vocab.json
    ├── unet
    │   ├── config.json
    │   ├── diffusion_pytorch_model.bin
    │   ├── diffusion_pytorch_model.fp16.bin
    │   ├── diffusion_pytorch_model.fp16.safetensors
    │   └── diffusion_pytorch_model.safetensors
    └── vae
        ├── config.json
        ├── diffusion_pytorch_model.bin
        ├── diffusion_pytorch_model.fp16.bin
        ├── diffusion_pytorch_model.fp16.safetensors
        └── diffusion_pytorch_model.safetensors

然后就可以用了:



相关推荐
巫婆理发2221 天前
循环序列模型
深度学习·神经网络
春日见1 天前
vscode代码无法跳转
大数据·人工智能·深度学习·elasticsearch·搜索引擎
OpenBayes1 天前
教程上新|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
人工智能·深度学习·目标检测·机器学习·大模型·ocr·gpu算力
退休钓鱼选手1 天前
[ Pytorch教程 ] 神经网络的基本骨架 torch.nn -Neural Network
pytorch·深度学习·神经网络
哥布林学者1 天前
吴恩达深度学习课程:深度学习入门笔记全集目录
深度学习·ai
xsc-xyc1 天前
RuntimeError: Dataset ‘/data.yaml‘ error ❌ ‘_lz
人工智能·深度学习·yolo·计算机视觉·视觉检测
AI周红伟1 天前
周红伟: DeepSeek大模型微调和部署实战:大模型全解析、部署及大模型训练微调代码实战
人工智能·深度学习
JicasdC123asd1 天前
【深度学习实战】基于Mask-RCNN和HRNetV2P的腰果智能分级系统_1
人工智能·深度学习
陈天伟教授1 天前
人工智能应用- 语言理解:07.大语言模型
人工智能·深度学习·语言模型
花月mmc1 天前
CanMV K230 波形识别——整体部署(4)
人工智能·python·嵌入式硬件·深度学习·信号处理