【深度学习 AIGC】stablediffusion-infinity 在无界限画布中输出绘画 Outpainting

代码:https://github.com/lkwq007/stablediffusion-infinity/tree/master

启动环境:

shell 复制代码
git clone --recurse-submodules https://github.com/lkwq007/stablediffusion-infinity
cd stablediffusion-infinity
conda env create -f environment.yml
conda activate sd-inf

# 一定更新一下!
conda install -c conda-forge diffusers transformers ftfy accelerate
conda update -c conda-forge diffusers transformers ftfy accelerate
pip install -U gradio

python app.py

修改了一下app.py的东西,最后面修改了ip和端口:

css 复制代码
launch_extra_kwargs = {
    "show_error": True,
    # "favicon_path": ""
}
launch_kwargs = vars(args)
launch_kwargs = {k: v for k, v in launch_kwargs.items() if v is not None}
print(launch_kwargs)
launch_kwargs.pop("remote_model", None)
launch_kwargs.pop("local_model", None)
launch_kwargs.pop("fp32", None)
launch_kwargs.pop("lowvram", None)
launch_kwargs.update(launch_extra_kwargs)
try:
    import google.colab

    launch_kwargs["debug"] = True
except:
    pass

if RUN_IN_SPACE:
    print("run in space")
    demo.launch()
elif args.debug:
    print(111111111)
    launch_kwargs["share"]=True
    launch_kwargs["server_name"] = "0.0.0.0"
    launch_kwargs["server_port"] = 8000
    demo.queue().launch(**launch_kwargs)
else:
    print(222222222)
    launch_kwargs["share"]=True
    launch_kwargs["server_name"] = "0.0.0.0"
    launch_kwargs["server_port"] = 8000
    demo.queue().launch(**launch_kwargs)

可以对照一下环境:

shell 复制代码
(sd-inf)   Thu Sep 14    20:59:37    /ssd/xiedong/stablediffusion-infinity  pip list
Package                       Version
----------------------------- ---------
absl-py                       1.3.0
accelerate                    0.22.0
aiofiles                      23.2.1
aiohttp                       3.8.1
aiosignal                     1.3.1
altair                        5.1.1
antlr4-python3-runtime        4.9.3
anyio                         3.6.2
async-timeout                 4.0.2
attrs                         23.1.0
backports.functools-lru-cache 1.6.4
bcrypt                        4.0.1
brotlipy                      0.7.0
cachetools                    5.2.0
certifi                       2023.7.22
cffi                          1.15.1
charset-normalizer            2.0.4
click                         8.1.3
cloudpickle                   2.0.0
cmake                         3.25.0
colorama                      0.4.6
commonmark                    0.9.1
contourpy                     1.0.6
cryptography                  38.0.1
cycler                        0.11.0
cytoolz                       0.12.0
dask                          2022.7.0
dataclasses                   0.8
datasets                      2.7.0
diffusers                     0.14.0
dill                          0.3.6
einops                        0.4.1
fastapi                       0.87.0
ffmpy                         0.3.0
filelock                      3.8.0
fonttools                     4.38.0
fpie                          0.2.4
frozenlist                    1.3.0
fsspec                        2022.10.0
ftfy                          6.1.1
google-auth                   2.14.1
google-auth-oauthlib          0.4.6
gradio                        3.44.2
gradio_client                 0.5.0
grpcio                        1.51.0
h11                           0.12.0
httpcore                      0.15.0
httpx                         0.23.1
huggingface-hub               0.17.1
idna                          3.4
imagecodecs                   2021.8.26
imageio                       2.19.3
importlib-metadata            5.0.0
importlib-resources           6.0.1
Jinja2                        3.1.2
joblib                        1.2.0
jsonschema                    4.19.0
jsonschema-specifications     2023.7.1
kiwisolver                    1.4.4
linkify-it-py                 1.0.3
llvmlite                      0.39.1
locket                        1.0.0
Markdown                      3.4.1
markdown-it-py                2.1.0
MarkupSafe                    2.1.1
matplotlib                    3.6.2
mdit-py-plugins               0.3.1
mdurl                         0.1.2
mkl-fft                       1.3.1
mkl-random                    1.2.2
mkl-service                   2.4.0
multidict                     6.0.2
multiprocess                  0.70.12.2
networkx                      2.8.4
numba                         0.56.4
numpy                         1.23.4
oauthlib                      3.2.2
omegaconf                     2.2.3
opencv-python                 4.6.0.66
opencv-python-headless        4.6.0.66
orjson                        3.8.2
packaging                     21.3
pandas                        1.4.2
paramiko                      2.12.0
partd                         1.2.0
Pillow                        9.2.0
pip                           22.2.2
protobuf                      3.20.3
psutil                        5.9.1
pyarrow                       8.0.0
pyasn1                        0.4.8
pyasn1-modules                0.2.8
pycparser                     2.21
pycryptodome                  3.15.0
pydantic                      1.10.2
pyDeprecate                   0.3.2
pydub                         0.25.1
Pygments                      2.13.0
PyNaCl                        1.5.0
pyOpenSSL                     22.0.0
pyparsing                     3.0.9
PySocks                       1.7.1
python-dateutil               2.8.2
python-multipart              0.0.5
pytorch-lightning             1.7.7
pytz                          2022.6
PyWavelets                    1.3.0
PyYAML                        6.0
referencing                   0.30.2
regex                         2022.4.24
requests                      2.28.1
requests-oauthlib             1.3.1
responses                     0.18.0
rfc3986                       1.5.0
rich                          12.6.0
rpds-py                       0.10.3
rsa                           4.9
sacremoses                    0.0.53
safetensors                   0.3.2
scikit-image                  0.19.2
scipy                         1.9.3
semantic-version              2.10.0
setuptools                    65.5.0
six                           1.16.0
sniffio                       1.3.0
sourceinspect                 0.0.4
starlette                     0.21.0
taichi                        1.2.2
tensorboard                   2.11.0
tensorboard-data-server       0.6.1
tensorboard-plugin-wit        1.8.1
tifffile                      2021.7.2
timm                          0.6.11
tokenizers                    0.11.4
toolz                         0.12.0
torch                         1.13.0
torchaudio                    0.13.0
torchmetrics                  0.10.3
torchvision                   0.14.0
tqdm                          4.64.1
transformers                  4.33.1
typing_extensions             4.3.0
uc-micro-py                   1.0.1
urllib3                       1.26.12
uvicorn                       0.20.0
wcwidth                       0.2.5
websockets                    10.4
Werkzeug                      2.2.2
wheel                         0.37.1
xxhash                        0.0.0
yarl                          1.7.2
zipp                          3.10.0

路径下建立一个stabilityai,然后下载stable-diffusion-2-inpainting放进去,sd-vae-ft-mse是stable-diffusion-2-inpainting/vae里的东西复制了一遍。

shell 复制代码
(sd-inf)   Thu Sep 14    21:00:31    /ssd/xiedong/stablediffusion-infinity  tree stabilityai/
stabilityai/
├── sd-vae-ft-mse
│   ├── config.json
│   ├── diffusion_pytorch_model.bin
│   ├── diffusion_pytorch_model.fp16.bin
│   ├── diffusion_pytorch_model.fp16.safetensors
│   └── diffusion_pytorch_model.safetensors
└── stable-diffusion-2-inpainting
    ├── 512-inpainting-ema.ckpt
    ├── 512-inpainting-ema.safetensors
    ├── feature_extractor
    │   └── preprocessor_config.json
    ├── merged-leopards.png
    ├── model_index.json
    ├── README.md
    ├── scheduler
    │   └── scheduler_config.json
    ├── sd-vae-ft-mse-original
    │   ├── README.md
    │   ├── vae-ft-mse-840000-ema-pruned.ckpt
    │   └── vae-ft-mse-840000-ema-pruned.safetensors
    ├── text_encoder
    │   ├── config.json
    │   ├── model.fp16.safetensors
    │   ├── model.safetensors
    │   ├── pytorch_model.bin
    │   └── pytorch_model.fp16.bin
    ├── tokenizer
    │   ├── merges.txt
    │   ├── special_tokens_map.json
    │   ├── tokenizer_config.json
    │   └── vocab.json
    ├── unet
    │   ├── config.json
    │   ├── diffusion_pytorch_model.bin
    │   ├── diffusion_pytorch_model.fp16.bin
    │   ├── diffusion_pytorch_model.fp16.safetensors
    │   └── diffusion_pytorch_model.safetensors
    └── vae
        ├── config.json
        ├── diffusion_pytorch_model.bin
        ├── diffusion_pytorch_model.fp16.bin
        ├── diffusion_pytorch_model.fp16.safetensors
        └── diffusion_pytorch_model.safetensors

然后就可以用了:



相关推荐
Y1nhl9 分钟前
搜广推校招面经八十一
开发语言·人工智能·pytorch·深度学习·机器学习·推荐算法·搜索算法
鸿蒙布道师4 小时前
OpenAI为何觊觎Chrome?AI时代浏览器争夺战背后的深层逻辑
前端·人工智能·chrome·深度学习·opencv·自然语言处理·chatgpt
何双新6 小时前
第1讲:Transformers 的崛起:从RNN到Self-Attention
人工智能·rnn·深度学习
AIGC大时代6 小时前
高质量学术引言如何妙用ChatGPT?如何写提示词
人工智能·深度学习·chatgpt·学术写作·chatgpt-o3·deep reaserch
数据智能老司机8 小时前
构建具备自主性的人工智能系统——探索协调者、工作者和委托者方法
深度学习·llm·aigc
数据智能老司机8 小时前
构建具备自主性的人工智能系统——使代理能够使用工具和进行规划
深度学习·llm·aigc
2301_769624408 小时前
基于Pytorch的深度学习-第二章
人工智能·pytorch·深度学习
-一杯为品-9 小时前
【深度学习】#9 现代循环神经网络
人工智能·rnn·深度学习
硅谷秋水9 小时前
ORION:通过视觉-语言指令动作生成的一个整体端到端自动驾驶框架
人工智能·深度学习·机器学习·计算机视觉·语言模型·自动驾驶
亿牛云爬虫专家10 小时前
深度学习在DOM解析中的应用:自动识别页面关键内容区块
深度学习·爬虫代理·dom·性能·代理ip·内容区块·东方财富吧