分类算法(KNN算法)

KNN(k-Nearest Neighbors)算法是一种常见的分类和回归算法。它的核心思想是通过计算待分类对象和训练集中已分类对象之间的距离来确定待分类对象所属的类别。其中,k表示选取距离待分类对象最近的k个训练样本,将这些样本的类别作为待分类对象的类别进行判定。

在分类问题中,KNN算法的基本步骤如下:

1.计算训练集中每个样本和待分类对象之间的距离。

2.选取距离待分类对象最近的k个训练样本。

3.统计这k个样本中出现最多的类别。

4.将待分类对象归为出现最多的类别。

在回归问题中,KNN算法的基本步骤如下:

1.计算训练集中每个样本和待预测对象之间的距离。

2.选取距离待预测对象最近的k个训练样本。

3.求这k个样本的平均值。

4.将待预测对象的预测值设为这个平均值。

需要注意的是,KNN算法中的距离度量方式会影响算法的分类或回归结果,一般使用欧氏距离、曼哈顿距离等度量方式。同时,在选择k值时,需要通过交叉验证等方法来确定最优的k值。

代码实现:

python 复制代码
import numpy as np

class KNN:
    def __init__(self, k=3):
        self.k = k
        
    def euclidean_distance(self, x1, x2):
        return np.sqrt(np.sum((x1 - x2)**2))
    
    def fit(self, X, y):
        self.X_train = X
        self.y_train = y
        
    def predict(self, X):
        y_pred = []
        for x in X:
            distances = [self.euclidean_distance(x, x_train) for x_train in self.X_train]
            k_indices = np.argsort(distances)[:self.k]
            k_nearest_labels = [self.y_train[i] for i in k_indices]
            most_common = Counter(k_nearest_labels).most_common(1)
            y_pred.append(most_common[0][0])
        return np.array(y_pred)
相关推荐
驱动探索者10 分钟前
linux mailbox 学习
linux·学习·算法
ringking12312 分钟前
autoware-1:安装环境cuda/cudnn/tensorRT库函数的判断
人工智能·算法·机器学习
大闲在人1 小时前
8. 供应链与制造过程术语:产能
算法·制造·供应链管理·智能制造·工业工程
一只小小的芙厨1 小时前
寒假集训笔记·以点为对象的树形DP
c++·算法
历程里程碑1 小时前
普通数组----合并区间
java·数据结构·python·算法·leetcode·职场和发展·tornado
执风挽^1 小时前
Python基础编程题2
开发语言·python·算法·visual studio code
Z9fish1 小时前
sse哈工大C语言编程练习20
c语言·开发语言·算法
晓13131 小时前
第六章 【C语言篇:结构体&位运算】 结构体、位运算全面解析
c语言·算法
iAkuya2 小时前
(leetcode)力扣100 61分割回文串(回溯,动归)
算法·leetcode·职场和发展
梵刹古音2 小时前
【C语言】 指针与数据结构操作
c语言·数据结构·算法