分类算法(KNN算法)

KNN(k-Nearest Neighbors)算法是一种常见的分类和回归算法。它的核心思想是通过计算待分类对象和训练集中已分类对象之间的距离来确定待分类对象所属的类别。其中,k表示选取距离待分类对象最近的k个训练样本,将这些样本的类别作为待分类对象的类别进行判定。

在分类问题中,KNN算法的基本步骤如下:

1.计算训练集中每个样本和待分类对象之间的距离。

2.选取距离待分类对象最近的k个训练样本。

3.统计这k个样本中出现最多的类别。

4.将待分类对象归为出现最多的类别。

在回归问题中,KNN算法的基本步骤如下:

1.计算训练集中每个样本和待预测对象之间的距离。

2.选取距离待预测对象最近的k个训练样本。

3.求这k个样本的平均值。

4.将待预测对象的预测值设为这个平均值。

需要注意的是,KNN算法中的距离度量方式会影响算法的分类或回归结果,一般使用欧氏距离、曼哈顿距离等度量方式。同时,在选择k值时,需要通过交叉验证等方法来确定最优的k值。

代码实现:

python 复制代码
import numpy as np

class KNN:
    def __init__(self, k=3):
        self.k = k
        
    def euclidean_distance(self, x1, x2):
        return np.sqrt(np.sum((x1 - x2)**2))
    
    def fit(self, X, y):
        self.X_train = X
        self.y_train = y
        
    def predict(self, X):
        y_pred = []
        for x in X:
            distances = [self.euclidean_distance(x, x_train) for x_train in self.X_train]
            k_indices = np.argsort(distances)[:self.k]
            k_nearest_labels = [self.y_train[i] for i in k_indices]
            most_common = Counter(k_nearest_labels).most_common(1)
            y_pred.append(most_common[0][0])
        return np.array(y_pred)
相关推荐
没有bug.的程序员4 小时前
Sentinel 流控原理深度解析:构建高可用微服务的底层架构
java·算法·微服务·云原生·架构·sentinel·负载均衡
深圳佛手4 小时前
IVFFlat 与 HNSW 算法介绍与对比
人工智能·算法·机器学习
Q741_1474 小时前
C++ 栈 模拟 力扣 227. 基本计算器 II 题解 每日一题
c++·算法·leetcode·模拟
徐新帅4 小时前
CSP 二进制与小数进制转换专题及答案解析
c++·算法
wxdlfkj4 小时前
从硬件极限到算法补偿:构建微米级工件特征“在机测量”闭环系统的技术路径解析
人工智能·算法·机器学习
王璐WL4 小时前
【数据结构】二叉树经典算法题和选择题
数据结构·算法
jllllyuz4 小时前
MATLAB多目标优化:SQP算法实现
数据结构·算法·matlab
im_AMBER4 小时前
数据结构 14 【复习】二叉树中序遍历 | 线索二叉树 | 树、森林、二叉树的转换 | 层次遍历二叉树
数据结构·笔记·学习·算法
im_AMBER5 小时前
Leetcode 88 K 和数对的最大数目
数据结构·c++·笔记·学习·算法·leetcode
_codemonster5 小时前
AI大模型入门到实战系列(十八)微调模型实现分类
人工智能·机器学习·分类