分类算法(KNN算法)

KNN(k-Nearest Neighbors)算法是一种常见的分类和回归算法。它的核心思想是通过计算待分类对象和训练集中已分类对象之间的距离来确定待分类对象所属的类别。其中,k表示选取距离待分类对象最近的k个训练样本,将这些样本的类别作为待分类对象的类别进行判定。

在分类问题中,KNN算法的基本步骤如下:

1.计算训练集中每个样本和待分类对象之间的距离。

2.选取距离待分类对象最近的k个训练样本。

3.统计这k个样本中出现最多的类别。

4.将待分类对象归为出现最多的类别。

在回归问题中,KNN算法的基本步骤如下:

1.计算训练集中每个样本和待预测对象之间的距离。

2.选取距离待预测对象最近的k个训练样本。

3.求这k个样本的平均值。

4.将待预测对象的预测值设为这个平均值。

需要注意的是,KNN算法中的距离度量方式会影响算法的分类或回归结果,一般使用欧氏距离、曼哈顿距离等度量方式。同时,在选择k值时,需要通过交叉验证等方法来确定最优的k值。

代码实现:

python 复制代码
import numpy as np

class KNN:
    def __init__(self, k=3):
        self.k = k
        
    def euclidean_distance(self, x1, x2):
        return np.sqrt(np.sum((x1 - x2)**2))
    
    def fit(self, X, y):
        self.X_train = X
        self.y_train = y
        
    def predict(self, X):
        y_pred = []
        for x in X:
            distances = [self.euclidean_distance(x, x_train) for x_train in self.X_train]
            k_indices = np.argsort(distances)[:self.k]
            k_nearest_labels = [self.y_train[i] for i in k_indices]
            most_common = Counter(k_nearest_labels).most_common(1)
            y_pred.append(most_common[0][0])
        return np.array(y_pred)
相关推荐
我不是QI1 天前
DES 加密算法:核心组件、加解密流程与安全特性
经验分享·算法·安全·网络安全·密码学
前端小刘哥1 天前
新版视频直播点播EasyDSS平台,让跨团队沟通高效又顺畅
算法
明月(Alioo)1 天前
机器学习入门,无监督学习之K-Means聚类算法完全指南:面向Java开发者的Python实现详解
python·算法·机器学习
叶梅树1 天前
从零构建A股量化交易工具:基于Qlib的全栈系统指南
前端·后端·算法
lingran__1 天前
算法沉淀第三天(统计二进制中1的个数 两个整数二进制位不同个数)
c++·算法
MicroTech20251 天前
微算法科技MLGO推出隐私感知联合DNN模型部署和分区优化技术,开启协作边缘推理新时代
科技·算法·dnn
小冯记录编程1 天前
深入解析C++ for循环原理
开发语言·c++·算法
chenchihwen1 天前
深度解析RAG系统中的PDF解析模块:Docling集成与并行处理实践
python·算法·pdf
做科研的周师兄1 天前
【机器学习入门】7.4 随机森林:一文吃透随机森林——从原理到核心特点
人工智能·学习·算法·随机森林·机器学习·支持向量机·数据挖掘
Sunsets_Red1 天前
差分操作正确性证明
java·c语言·c++·python·算法·c#