概率论几种易混淆的形式

  1. 正态分布标准型

x − μ σ \frac{x - \mu}{\sigma} σx−μ

  1. 大数定律形式

P { X ≤ ∑ i = 1 n x i − n μ n σ 2 } = ∫ − ∞ X 1 2 π e − x 2 2 d x P\{X \le \frac{\sum_{i= 1}^{n}x_i -n\mu}{\sqrt{n\sigma^2}} \} = \int _{-\infty}^{X}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx P{X≤nσ2 ∑i=1nxi−nμ}=∫−∞X2π 1e−2x2dx

即:

P { X ≤ x ˉ − μ σ n } = ∫ − ∞ X 1 2 π e − x 2 2 d x P\{X \le \frac{\bar x -\mu}{\frac{\sigma}{\sqrt{n}}} \} = \int _{-\infty}^{X}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx P{X≤n σxˉ−μ}=∫−∞X2π 1e−2x2dx

  1. 关于 χ 2 \chi^2 χ2的定理

( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) σ2(n−1)S2∼χ2(n−1)

  1. x ˉ − μ S / n ∼ t 2 ( n − 1 ) \frac{\bar x - \mu}{S/\sqrt{n}} \sim t^2(n-1) S/n xˉ−μ∼t2(n−1)
相关推荐
Jamence18 小时前
【深度学习数学知识】-贝叶斯公式
人工智能·深度学习·概率论
HSunR3 天前
概率论 期末 笔记
笔记·概率论
2302_796984744 天前
概率论基础知识点公式汇总
概率论
项目申报小狂人4 天前
广义正态分布优化算法(GNDO)Generalized Normal Distribution Optimization
算法·概率论
2302_796984744 天前
概率论基础
概率论
感谢地心引力4 天前
【数据分析】层次贝叶斯
机器学习·数据分析·概率论
Mount2564 天前
【数理统计】极限定理及抽样分布
概率论
勤劳的进取家4 天前
多维高斯分布
人工智能·机器学习·概率论
公众号Codewar原创作者5 天前
R机器学习:朴素贝叶斯算法的理解与实操
人工智能·机器学习·概率论
orion-orion5 天前
概率论沉思录:初等假设检验
人工智能·概率论·科学哲学