概率论几种易混淆的形式

  1. 正态分布标准型

x − μ σ \frac{x - \mu}{\sigma} σx−μ

  1. 大数定律形式

P { X ≤ ∑ i = 1 n x i − n μ n σ 2 } = ∫ − ∞ X 1 2 π e − x 2 2 d x P\{X \le \frac{\sum_{i= 1}^{n}x_i -n\mu}{\sqrt{n\sigma^2}} \} = \int _{-\infty}^{X}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx P{X≤nσ2 ∑i=1nxi−nμ}=∫−∞X2π 1e−2x2dx

即:

P { X ≤ x ˉ − μ σ n } = ∫ − ∞ X 1 2 π e − x 2 2 d x P\{X \le \frac{\bar x -\mu}{\frac{\sigma}{\sqrt{n}}} \} = \int _{-\infty}^{X}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx P{X≤n σxˉ−μ}=∫−∞X2π 1e−2x2dx

  1. 关于 χ 2 \chi^2 χ2的定理

( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) σ2(n−1)S2∼χ2(n−1)

  1. x ˉ − μ S / n ∼ t 2 ( n − 1 ) \frac{\bar x - \mu}{S/\sqrt{n}} \sim t^2(n-1) S/n xˉ−μ∼t2(n−1)
相关推荐
jackyrongvip3 天前
妙用《甄嬛传》中的选妃来记忆概率论中的乘法公式
概率论
lynn-666 天前
【深度学习与大模型基础】第8章-概率分布
人工智能·算法·机器学习·概率论
猎人everest9 天前
机器学习之概率论
人工智能·机器学习·概率论
豆芽8199 天前
二项式分布(Binomial Distribution)
人工智能·python·机器学习·numpy·概率论
zbdx不知名菜鸡11 天前
self Attention为何除以根号dk?(全新角度)
transformer·attention·概率论
优美的赫蒂11 天前
扩展卡尔曼滤波
机器学习·数学建模·矩阵·概率论
Lichenpar13 天前
AI小白的第七天:必要的数学知识(四)
人工智能·概率论·概率分布
pen-ai13 天前
离散概率分布:正态分布,二项分布,连续分布,正态分布的性质
算法·机器学习·概率论
kngines13 天前
从零构建大语言模型全栈开发指南:第一部分:数学与理论基础-1.1.2核心数学基础:线性代数、概率论与梯度优化
人工智能·线性代数·大语言模型·概率论·强化学习·rlhf
zyq~14 天前
【课堂笔记】定理:样本越多,测量的经验损失越接近真实损失
笔记·机器学习·概率论