概率论几种易混淆的形式

  1. 正态分布标准型

x − μ σ \frac{x - \mu}{\sigma} σx−μ

  1. 大数定律形式

P { X ≤ ∑ i = 1 n x i − n μ n σ 2 } = ∫ − ∞ X 1 2 π e − x 2 2 d x P\{X \le \frac{\sum_{i= 1}^{n}x_i -n\mu}{\sqrt{n\sigma^2}} \} = \int _{-\infty}^{X}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx P{X≤nσ2 ∑i=1nxi−nμ}=∫−∞X2π 1e−2x2dx

即:

P { X ≤ x ˉ − μ σ n } = ∫ − ∞ X 1 2 π e − x 2 2 d x P\{X \le \frac{\bar x -\mu}{\frac{\sigma}{\sqrt{n}}} \} = \int _{-\infty}^{X}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx P{X≤n σxˉ−μ}=∫−∞X2π 1e−2x2dx

  1. 关于 χ 2 \chi^2 χ2的定理

( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) σ2(n−1)S2∼χ2(n−1)

  1. x ˉ − μ S / n ∼ t 2 ( n − 1 ) \frac{\bar x - \mu}{S/\sqrt{n}} \sim t^2(n-1) S/n xˉ−μ∼t2(n−1)
相关推荐
忧郁奔向冷的天6 小时前
泊松分布与指数分布以及一道贝叶斯推断例题
概率论
EniacCheng1 天前
贝叶斯定理
人工智能·机器学习·概率论
EniacCheng2 天前
二项分布和泊松分布
概率论·泊松分布·二项分布
byzh_rc2 天前
[模式识别-从入门到入土] 组合分类器
人工智能·算法·机器学习·支持向量机·概率论
牧歌悠悠3 天前
【Random Matrices】第一章-随机矩阵入门
线性代数·数学·概率论·随机矩阵·高维概率
缘友一世6 天前
现代密码学【3】之密码学形式化分析与可证明安全基础
安全·密码学·概率论
byzh_rc6 天前
[模式识别-从入门到入土] 拓展-EM算法
算法·机器学习·概率论
无水先生7 天前
随机变量在代数运算中的误差传播(2/2)
概率论·统计学
图像生成小菜鸟7 天前
Score Based diffusion model 数学推导
算法·机器学习·概率论
*星星之火*8 天前
【大白话 AI 答疑】 第7篇熵、交叉熵与交叉熵损失的概念梳理及计算示例
人工智能·机器学习·概率论