PyG-GAT-Cora(在Cora数据集上应用GAT做节点分类)

文章目录

model.py

py 复制代码
import torch.nn as nn
from torch_geometric.nn import GATConv
import torch.nn.functional as F
class gat_cls(nn.Module):
    def __init__(self,in_dim,hid_dim,out_dim,dropout_size=0.5):
        super(gat_cls,self).__init__()
        self.conv1 = GATConv(in_dim,hid_dim)
        self.conv2 = GATConv(hid_dim,hid_dim)
        self.fc = nn.Linear(hid_dim,out_dim)
        self.relu  = nn.ReLU()
        self.dropout_size = dropout_size
    def forward(self,x,edge_index):
        x = self.conv1(x,edge_index)
        x = F.dropout(x,p=self.dropout_size,training=self.training)
        x = self.relu(x)
        x = self.conv2(x,edge_index)
        x = self.relu(x)
        x = self.fc(x)
        return x

main.py

py 复制代码
import torch
import torch.nn as nn
from torch_geometric.datasets import Planetoid
from model import gat_cls
import torch.optim as optim
dataset = Planetoid(root='./data/Cora', name='Cora')
print(dataset[0])
cora_data = dataset[0]

epochs = 50
lr = 1e-3
weight_decay = 5e-3
momentum = 0.5
hidden_dim = 128
output_dim = 7


net = gat_cls(cora_data.x.shape[1],hidden_dim,output_dim)
optimizer = optim.AdamW(net.parameters(),lr=lr,weight_decay=weight_decay)
#optimizer = optim.SGD(net.parameters(),lr = lr,momentum=momentum)
criterion = nn.CrossEntropyLoss()
print("****************Begin Training****************")
net.train()
for epoch in range(epochs):
    out = net(cora_data.x,cora_data.edge_index)
    optimizer.zero_grad()
    loss_train = criterion(out[cora_data.train_mask],cora_data.y[cora_data.train_mask])
    loss_val   = criterion(out[cora_data.val_mask],cora_data.y[cora_data.val_mask])
    loss_train.backward()
    print('epoch',epoch+1,'loss-train {:.2f}'.format(loss_train),'loss-val {:.2f}'.format(loss_val))
    optimizer.step()

net.eval()
out = net(cora_data.x,cora_data.edge_index)
loss_test = criterion(out[cora_data.test_mask],cora_data.y[cora_data.test_mask])
_,pred = torch.max(out,dim=1)
pred_label = pred[cora_data.test_mask]
true_label = cora_data.y[cora_data.test_mask]
acc = sum(pred_label==true_label)/len(pred_label)
print("****************Begin Testing****************")
print('loss-test {:.2f}'.format(loss_test),'acc {:.2f}'.format(acc))

参数设置

bash 复制代码
epochs = 50
lr = 1e-3
weight_decay = 5e-3
momentum = 0.5
hidden_dim = 128
output_dim = 7

运行图

相关推荐
chxin140161 天前
Transformer注意力机制——动手学深度学习10
pytorch·rnn·深度学习·transformer
lljss20201 天前
5. 神经网络的学习
人工智能·神经网络·学习
jie*1 天前
小杰深度学习(fourteen)——视觉-经典神经网络——ResNet
人工智能·python·深度学习·神经网络·机器学习·tensorflow·lstm
闲看云起1 天前
论文阅读《LIMA:Less Is More for Alignment》
论文阅读·人工智能·语言模型·自然语言处理
jie*1 天前
小杰深度学习(sixteen)——视觉-经典神经网络——MobileNetV2
人工智能·python·深度学习·神经网络·tensorflow·numpy·matplotlib
MYX_3091 天前
第五章 神经网络的优化
pytorch·深度学习·神经网络·学习
TGITCIC1 天前
有趣的机器学习-利用神经网络来模拟“古龙”写作风格的输出器
人工智能·深度学习·神经网络·ai大模型·模型训练·训练模型·手搓模型
whltaoin1 天前
AI 超级智能体全栈项目阶段五:RAG 四大流程详解、最佳实践与调优(基于 Spring AI 实现)
java·人工智能·spring·rag·springai
Piink1 天前
网络模型训练完整代码
人工智能·深度学习·机器学习
曾经的三心草1 天前
OpenCV4-直方图与傅里叶变换-项目实战-信用卡数字识别
python·opencv·计算机视觉