PyG-GAT-Cora(在Cora数据集上应用GAT做节点分类)

文章目录

model.py

py 复制代码
import torch.nn as nn
from torch_geometric.nn import GATConv
import torch.nn.functional as F
class gat_cls(nn.Module):
    def __init__(self,in_dim,hid_dim,out_dim,dropout_size=0.5):
        super(gat_cls,self).__init__()
        self.conv1 = GATConv(in_dim,hid_dim)
        self.conv2 = GATConv(hid_dim,hid_dim)
        self.fc = nn.Linear(hid_dim,out_dim)
        self.relu  = nn.ReLU()
        self.dropout_size = dropout_size
    def forward(self,x,edge_index):
        x = self.conv1(x,edge_index)
        x = F.dropout(x,p=self.dropout_size,training=self.training)
        x = self.relu(x)
        x = self.conv2(x,edge_index)
        x = self.relu(x)
        x = self.fc(x)
        return x

main.py

py 复制代码
import torch
import torch.nn as nn
from torch_geometric.datasets import Planetoid
from model import gat_cls
import torch.optim as optim
dataset = Planetoid(root='./data/Cora', name='Cora')
print(dataset[0])
cora_data = dataset[0]

epochs = 50
lr = 1e-3
weight_decay = 5e-3
momentum = 0.5
hidden_dim = 128
output_dim = 7


net = gat_cls(cora_data.x.shape[1],hidden_dim,output_dim)
optimizer = optim.AdamW(net.parameters(),lr=lr,weight_decay=weight_decay)
#optimizer = optim.SGD(net.parameters(),lr = lr,momentum=momentum)
criterion = nn.CrossEntropyLoss()
print("****************Begin Training****************")
net.train()
for epoch in range(epochs):
    out = net(cora_data.x,cora_data.edge_index)
    optimizer.zero_grad()
    loss_train = criterion(out[cora_data.train_mask],cora_data.y[cora_data.train_mask])
    loss_val   = criterion(out[cora_data.val_mask],cora_data.y[cora_data.val_mask])
    loss_train.backward()
    print('epoch',epoch+1,'loss-train {:.2f}'.format(loss_train),'loss-val {:.2f}'.format(loss_val))
    optimizer.step()

net.eval()
out = net(cora_data.x,cora_data.edge_index)
loss_test = criterion(out[cora_data.test_mask],cora_data.y[cora_data.test_mask])
_,pred = torch.max(out,dim=1)
pred_label = pred[cora_data.test_mask]
true_label = cora_data.y[cora_data.test_mask]
acc = sum(pred_label==true_label)/len(pred_label)
print("****************Begin Testing****************")
print('loss-test {:.2f}'.format(loss_test),'acc {:.2f}'.format(acc))

参数设置

bash 复制代码
epochs = 50
lr = 1e-3
weight_decay = 5e-3
momentum = 0.5
hidden_dim = 128
output_dim = 7

运行图

相关推荐
熬夜敲代码的小N2 小时前
仓颉ArrayList动态数组源码分析:从底层实现到性能优化
数据结构·python·算法·ai·性能优化
yumgpkpm2 小时前
Hadoop大数据平台在中国AI时代的后续发展趋势研究CMP(类Cloudera CDP 7.3 404版华为鲲鹏Kunpeng)
大数据·hive·hadoop·python·zookeeper·oracle·cloudera
YisquareTech2 小时前
从“零”构建零售EDI能力:实施路径与常见陷阱
网络·人工智能·edi·零售·零售edi
电科_银尘2 小时前
【大语言模型】-- OpenAI定义的五个AGI发展阶段
人工智能·语言模型·agi
mm-q29152227292 小时前
知乎知学堂/AGI课堂·AI大模型全栈工程师培养计划,【第二期】+【第四期】
人工智能·agi
道可云2 小时前
以场景赋能激发新质生产力——“人工智能+”引领人机共生新图景
人工智能
进击的炸酱面2 小时前
第五章 神经网络
人工智能·深度学习·神经网络
沉默媛2 小时前
如何下载安装以及使用labelme,一个可以打标签的工具,实现数据集处理,详细教程
图像处理·人工智能·python·yolo·计算机视觉
Elastic 中国社区官方博客2 小时前
Elasticsearch:相关性在 AI 代理上下文工程中的影响
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
ChoSeitaku2 小时前
线代强化NO4|行列式的计算
线性代数·机器学习·矩阵