【MATLAB第77期】基于MATLAB代理模型算法的降维/特征排序/数据处理回归/分类问题MATLAB代码实现【更新中】

【MATLAB第77期】基于MATLAB代理模型算法的降维/特征排序/数据处理回归/分类问题MATLAB代码实现

本文介绍基于libsvm代理模型算法的特征排序方法合集,包括:

1.基于每个特征预测精度进行排序(libsvm代理模型)

2.基于相关系数corr的特征排序(libsvm代理模型)

3.svmrfe_ker(二分类)【后续更新】

4.基于SVM-RFE递归特征消除的特征排序svmrfe_ori(二分类)【后续更新】

一、多输入单输出多分类问题

数据设置 :

分类数据,12输入1输出4分类,357样本

clike 复制代码
classdata=xlsread('数据集C.xlsx');
X=classdata(:,1:end-1)';% 输入变量
Y=classdata(:,end);%输出标签
[X, ps_input] = mapminmax(X, 0, 1);
X=X';
ptrain_per=0.7;%训练比例 
trainIdx = randperm(size(X,1),ceil(size(X,1)*ptrain_per));%训练样本编号
testIdx = setdiff(1:size(X,1),trainIdx);%测试样本编号
K=10;%10折
cvObj = cvpartition(Y(testIdx),'k',K);
userdata.cvObj = cvObj;
userdata.ft = X(testIdx,:);%测试集输入
userdata.target = Y(testIdx);%测试集输出

nSel = size(X,2);%选择的特征数量 ,可以小于等于变量特征数

1、基于每个特征预测精度进行排序(libsvm代理模型)

即通过每个变量作为输入特征,通过十折平均误差率来对特征进行排序。

累计贡献度为 0.9


2、基于相关系数corr的特征排序(libsvm代理模型)

适应度函数------测试集平均R2为:0.88588

二、多输入单输出回归问题

数据设置 :

分类数据,7输入1输出,107样本

clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('数据集.xlsx');

%%  划分训练集和测试集


ptrain_per=0.7;%训练比例 
trainIdx = randperm(size(res,1),ceil(size(res,1)*ptrain_per));%训练样本编号
testIdx = setdiff(1:size(res,1),trainIdx);%测试样本编号

P_train = res(trainIdx, 1: 7)';
T_train = res(trainIdx, 8)';
M = size(P_train, 2);

P_test = res(testIdx, 1: 7)';
T_test = res(testIdx, 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
K=10;%10折
cvObj = cvpartition(Y(testIdx),'k',K);
userdata.cvObj = cvObj;
userdata.ft = X(testIdx,:);%测试集输入
userdata.target = Y(testIdx);%测试集输出

nSel = size(X,2);%选择的特征数量 ,可以小于等于变量特征数

1、基于每个特征预测精度进行排序(libsvm代理模型)

即通过每个变量作为输入特征,通过十折平均误差率来对特征进行排序。

累计贡献度为 0.9

2、基于相关系数corr的特征排序(libsvm代理模型)


三、代码获取

CSDN私信回复"77期"即可获取下载方式。

相关推荐
wh_xia_jun13 小时前
基础分类模型及回归简介(一)
分类·数据挖掘·回归
Chef_Chen16 小时前
从0开始学习R语言--Day49--Lasso-Cox 回归
学习·回归·r语言
RickyWasYoung1 天前
【代码】Matlab鸟瞰图函数
开发语言·matlab
李昊哲小课1 天前
K近邻算法的分类与回归应用场景
python·机器学习·分类·数据挖掘·回归·近邻算法·sklearn
摸鱼仙人~2 天前
现代人工智能综合分类:大模型时代的架构、模态与生态系统
人工智能·分类·数据挖掘
麻雀无能为力2 天前
CAU数据挖掘第四章 分类问题
人工智能·分类·数据挖掘·中国农业大学计算机
lucky_lyovo2 天前
卷积神经网络-卷积的分类
深度学习·分类·cnn
weixin_464078072 天前
机器学习sklearn入门:使用KNN模型分类鸢尾花和使用交叉验证进行简单调参
机器学习·分类·sklearn
图像僧2 天前
多相机depth-rgb图组完整性分拣器_MATLAB实现
matlab
程高兴2 天前
基于Matlab的四旋翼无人机动力学PID控制仿真
开发语言·matlab·无人机