如何实现torch.arange的tensor版本

文章目录

背景

python 复制代码
import torch

我们都知道,torch.arange只支持数字,不支持tensor,如下:

python 复制代码
torch.arange(0,5,1)

tensor([0, 1, 2, 3, 4])

但是如果使用tensor,就会报错:

python 复制代码
torch.arange(torch.tensor([0]),torch.tensor([5]),torch.tensor([1]))

可问题是,我们有如下场景怎么办:

python 复制代码
torch.arange(torch.tensor([0,2]),torch.tensor([5,7]),torch.tensor([1,1]))

也就是说,我们希望

python 复制代码
torch.arange(0,5,1)和torch.arange(2,7,1)

并行做,难道就不行吗?

实现方案

上面这种并行是可以做到的,如下:

python 复制代码
x=torch.arange(0,5,1).reshape(1,-1)
a=torch.tensor([0,2])
a=a.reshape(-1,1)
x=a+x
x

tensor([[0, 1, 2, 3, 4],

2, 3, 4, 5, 6\]\])

不可行的情况

细心的人可以发现,上面是具有特殊性的,

python 复制代码
torch.arange(torch.tensor([0,2]),torch.tensor([5,7]),torch.tensor([1,1]))

python 复制代码
torch.tensor([0,2])+5=torch.tensor([5,7])

且步长是一样的:

python 复制代码
torch.tensor([1,1])#步长都是1

为什么必须这样呢?因为这样才可以保证,输出的结果的维度是一样的。比如你换一个:

python 复制代码
torch.arange(torch.tensor([0,2]),torch.tensor([5,7]),torch.tensor([1,2]))

步长一个是1,一个是2,这样肯定不行,两个arange输出的维度不同,就肯定不可能并行。再比如:

python 复制代码
torch.arange(torch.tensor([0,2]),torch.tensor([5,9]),torch.tensor([1,1]))

步长是一样了,但是5-0=5,9-2=7(end-start),最终arange输出的维度还是会不同,无法并行。

相关推荐
黑金IT8 分钟前
`.cursorrules` 与 `.cursorcontext`:Cursor AI 编程助手时代下的“双轨配置”指南
人工智能
zhousenshan1 小时前
Python爬虫常用框架
开发语言·爬虫·python
dlraba8021 小时前
基于 OpenCV 的信用卡数字识别:从原理到实现
人工智能·opencv·计算机视觉
IMER SIMPLE1 小时前
人工智能-python-深度学习-经典神经网络AlexNet
人工智能·python·深度学习
CodeCraft Studio1 小时前
国产化Word处理组件Spire.DOC教程:使用 Python 将 Markdown 转换为 HTML 的详细教程
python·html·word·markdown·国产化·spire.doc·文档格式转换
专注API从业者2 小时前
Python/Java 代码示例:手把手教程调用 1688 API 获取商品详情实时数据
java·linux·数据库·python
java1234_小锋2 小时前
[免费]基于Python的协同过滤电影推荐系统(Django+Vue+sqlite+爬虫)【论文+源码+SQL脚本】
python·django·电影推荐系统·协同过滤
看海天一色听风起雨落3 小时前
Python学习之装饰器
开发语言·python·学习
小憩-3 小时前
【机器学习】吴恩达机器学习笔记
人工智能·笔记·机器学习
却道天凉_好个秋3 小时前
深度学习(二):神经元与神经网络
人工智能·神经网络·计算机视觉·神经元