如何实现torch.arange的tensor版本

文章目录

背景

python 复制代码
import torch

我们都知道,torch.arange只支持数字,不支持tensor,如下:

python 复制代码
torch.arange(0,5,1)

tensor([0, 1, 2, 3, 4])

但是如果使用tensor,就会报错:

python 复制代码
torch.arange(torch.tensor([0]),torch.tensor([5]),torch.tensor([1]))

可问题是,我们有如下场景怎么办:

python 复制代码
torch.arange(torch.tensor([0,2]),torch.tensor([5,7]),torch.tensor([1,1]))

也就是说,我们希望

python 复制代码
torch.arange(0,5,1)和torch.arange(2,7,1)

并行做,难道就不行吗?

实现方案

上面这种并行是可以做到的,如下:

python 复制代码
x=torch.arange(0,5,1).reshape(1,-1)
a=torch.tensor([0,2])
a=a.reshape(-1,1)
x=a+x
x

tensor([[0, 1, 2, 3, 4],

[2, 3, 4, 5, 6]])

不可行的情况

细心的人可以发现,上面是具有特殊性的,

python 复制代码
torch.arange(torch.tensor([0,2]),torch.tensor([5,7]),torch.tensor([1,1]))

python 复制代码
torch.tensor([0,2])+5=torch.tensor([5,7])

且步长是一样的:

python 复制代码
torch.tensor([1,1])#步长都是1

为什么必须这样呢?因为这样才可以保证,输出的结果的维度是一样的。比如你换一个:

python 复制代码
torch.arange(torch.tensor([0,2]),torch.tensor([5,7]),torch.tensor([1,2]))

步长一个是1,一个是2,这样肯定不行,两个arange输出的维度不同,就肯定不可能并行。再比如:

python 复制代码
torch.arange(torch.tensor([0,2]),torch.tensor([5,9]),torch.tensor([1,1]))

步长是一样了,但是5-0=5,9-2=7(end-start),最终arange输出的维度还是会不同,无法并行。

相关推荐
云空2 分钟前
《Python 与 SQLite:强大的数据库组合》
数据库·python·sqlite
成富32 分钟前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
凤枭香44 分钟前
Python OpenCV 傅里叶变换
开发语言·图像处理·python·opencv
CSDN云计算1 小时前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
测试杂货铺1 小时前
外包干了2年,快要废了。。
自动化测试·软件测试·python·功能测试·测试工具·面试·职场和发展
艾派森1 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing11231 小时前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子1 小时前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing1 小时前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
小码的头发丝、1 小时前
Django中ListView 和 DetailView类的区别
数据库·python·django