卷积神经网络-池化层和激活层

**2.**池化层

根据特征图上的局部统计信息进行下采样,在保留有用信息的同时减少特征图的大小。和卷积层不同的是,池化层不包含需要学习的参数。最大池化(max-pooling)在一个局部区域选最大值作为输出,而平均池化(average pooling)计算一个局部区域的均值作为输出。局部区域池化中最大池化使用更多,而全局平均池化(global average pooling)是更常用的全局池化方法。

池化的核通常采用2×2的大小,平均池化就是计算2×2范围内的平均值,最大池化就是取该范围内的最大值。目前比较常用的是最大池化。在经过池化后,原图像的channel是不发生改变的。

池化层的作用:

  1. 增加特征平移不变性。
  2. 减小特征图大小。
  3. 最大池化可以带来非线性。

**3.**激活层

激活层的作用在于将前一层的线性输出,通过非线性的激活函数进行处理,这样用以模拟任意函数,从而增强网络的表征能力。激活层常用的函数包括sigmoid和ReLu(Rectified-Linear Unit,修正线性单元)等。激活函数是一些非线性的函数,这些函数的特性有所不同:

1.sigmoid函数可以将数值压缩到[0, 1]的区间。

2.tanh可以将数值压缩到[-1, 1]的区间。

3.ReLu函数实现一个取正的效果,所有负数的信息都抛弃。

4.LeakyReLu是一种相对折中的ReLu,认为当数值为负的时候可能也存在一定有用的信息,那么就乘以一个系数0.1(可以调整或自动学习),从而获取负数中的一部分信息。

5.Maxout使用两套参数,取其中值大的一套作为输出。

6.ELU类似于LeakyReLu,只是使用的公式不同。

以Tensorflow为例学习如何搭建这些层的方法:

卷积层:tf.nn.conv2d(input, filter, strides, padding)

激活层:tf.nn.relu()

池化层:tf.nn.max_pool()(最大池化)

相关推荐
聚客AI16 分钟前
系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
人工智能·pytorch·python·rnn·神经网络·机器学习·自然语言处理
Chirp1 小时前
代码层面上解读ACE-Step
人工智能·机器学习
MPCTHU1 小时前
机器学习的数学基础:线性模型
数学·机器学习
Tadas-Gao2 小时前
7种分类数据编码技术详解:从原理到实战
人工智能·机器学习·分类·数据挖掘·大模型·llm
TY-20252 小时前
机器学习算法_决策树
算法·决策树·机器学习
king of code porter2 小时前
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
人工智能·深度学习·剪枝
聚客AI3 小时前
PyTorch进阶:从自定义损失函数到生产部署全栈指南
人工智能·pytorch·深度学习
愿所愿皆可成5 小时前
机器学习之聚类Kmeans算法
算法·机器学习·kmeans·聚类
RockyRich5 小时前
突然无法调用scikit-learn、xgboost
python·机器学习·scikit-learn
沅_Yuan5 小时前
基于 CNN-SHAP 分析卷积神经网络的多分类预测【MATLAB】
神经网络·matlab·分类·cnn·shap可解释性