卷积神经网络-池化层和激活层

**2.**池化层

根据特征图上的局部统计信息进行下采样,在保留有用信息的同时减少特征图的大小。和卷积层不同的是,池化层不包含需要学习的参数。最大池化(max-pooling)在一个局部区域选最大值作为输出,而平均池化(average pooling)计算一个局部区域的均值作为输出。局部区域池化中最大池化使用更多,而全局平均池化(global average pooling)是更常用的全局池化方法。

池化的核通常采用2×2的大小,平均池化就是计算2×2范围内的平均值,最大池化就是取该范围内的最大值。目前比较常用的是最大池化。在经过池化后,原图像的channel是不发生改变的。

池化层的作用:

  1. 增加特征平移不变性。
  2. 减小特征图大小。
  3. 最大池化可以带来非线性。

**3.**激活层

激活层的作用在于将前一层的线性输出,通过非线性的激活函数进行处理,这样用以模拟任意函数,从而增强网络的表征能力。激活层常用的函数包括sigmoid和ReLu(Rectified-Linear Unit,修正线性单元)等。激活函数是一些非线性的函数,这些函数的特性有所不同:

1.sigmoid函数可以将数值压缩到[0, 1]的区间。

2.tanh可以将数值压缩到[-1, 1]的区间。

3.ReLu函数实现一个取正的效果,所有负数的信息都抛弃。

4.LeakyReLu是一种相对折中的ReLu,认为当数值为负的时候可能也存在一定有用的信息,那么就乘以一个系数0.1(可以调整或自动学习),从而获取负数中的一部分信息。

5.Maxout使用两套参数,取其中值大的一套作为输出。

6.ELU类似于LeakyReLu,只是使用的公式不同。

以Tensorflow为例学习如何搭建这些层的方法:

卷积层:tf.nn.conv2d(input, filter, strides, padding)

激活层:tf.nn.relu()

池化层:tf.nn.max_pool()(最大池化)

相关推荐
Mory_Herbert2 小时前
5.1 神经网络: 层和块
人工智能·深度学习·神经网络
知来者逆4 小时前
在与大语言模型交互中的礼貌现象:技术影响、社会行为与文化意义的多维度探讨
人工智能·深度学习·语言模型·自然语言处理·llm
IT猿手5 小时前
基于 Q-learning 的城市场景无人机三维路径规划算法研究,可以自定义地图,提供完整MATLAB代码
深度学习·算法·matlab·无人机·强化学习·qlearning·无人机路径规划
魔障阿Q7 小时前
windows使用bat脚本激活conda环境
人工智能·windows·python·深度学习·conda
shadowtalon9 小时前
基于CNN的猫狗图像分类系统
人工智能·深度学习·神经网络·机器学习·计算机视觉·分类·cnn
蹦蹦跳跳真可爱5899 小时前
Python----神经网络(《Deep Residual Learning for Image Recognition》论文和ResNet网络结构)
人工智能·python·深度学习·神经网络
豆芽81910 小时前
Vision Transformer(ViT)
人工智能·深度学习·目标检测·计算机视觉·transformer
終不似少年遊*11 小时前
MindSpore框架学习项目-ResNet药物分类-模型优化
人工智能·深度学习·机器学习·计算机视觉·分类·数据挖掘·华为云
Code_流苏11 小时前
《Python星球日记》 第55天:迁移学习与预训练模型
python·深度学习·微调·resnet·迁移学习·预训练模型·超参数优化
背太阳的牧羊人11 小时前
SemanticSplitterNodeParser 和 Sentence-BERT 的区别和联系是什么
人工智能·深度学习·bert