OpenCV实现人脸检测(Haar特征)

学习目标

原理

实现

import cv2 as cv
print(cv.__file__)

路径:E:\Anaconda3\envs\test_py3.6\Lib\site-packages\cv2\data

代码实现

import cv2 as cv
import matplotlib.pyplot as plt
from pylab import mpl

mpl.rcParams['font.sans-serif'] = ['SimHei']
#1,以灰度图的形式读取图片
img = cv.imread("ll.jpg")
gray = cv.cvtColor(img , cv.COLOR_BGR2GRAY)

#2,实例化OpenCV人脸 和 眼睛识别的分类器
face_cas = cv.CascadeClassifier("haarcascade_frontalface_default.xml")
face_cas.load("haarcascade_frontalface_default.xml")  #加载已训练好的人脸识别模型


eyes_cas = cv.CascadeClassifier("haarcascade_eye.xml")
eyes_cas.load("haarcascade_eye.xml") #加载已训练好的眼睛识别模型

#3,调用识别人脸
'''gray: 输入灰度图像;
scaleFactor: 图像缩放比例,即在前一张图像的基础上,将图像缩小的比例,默认为 1.1;
minNeighbors: 每个矩形应该保留的邻居数,这个参数可以理解为减少误检的一个参数。默认为 3,可以根据实际情况调整;
minSize: 目标矩形的最小大小,小于这个尺寸的矩形会被忽略,默认为 (30, 30),这里设置为 (32, 32)。'''
faceRects = face_cas.detectMultiScale( gray,scaleFactor=1.2,minNeighbors=10,minSize=(32,32))
for faceRect in faceRects: #遍历所有检测到的人脸矩形框
    x,y,w,h = faceRect  #获取当前人脸矩形框的坐标和大小
    #框出人脸
    cv.rectangle(img,(x,y),(x+h,y+w),(0,255,0),3)
    #4,在识别出的人脸中进行眼睛检测
    roi_color = img[y:y+h,x:x+w]  #提取当前人脸区域的彩色图像
    roi_gray = gray[y:y+h,x:x+w]  #提取当前人脸区域的灰度图像
    eyes = eyes_cas.detectMultiScale(roi_gray)  #在当前人脸区域检测眼睛,并返回检测到的眼睛矩形框数组
    for (ex,ey,ew,eh) in eyes:  #遍历所有检测到的眼睛矩形框
        cv.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)

#检测结果绘制
plt.figure(figsize=(8,6),dpi=100)
plt.imshow(img[:,:,::-1]),plt.title("检测结果")
plt.show()

结果展示

相关推荐
古希腊掌管学习的神1 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI1 小时前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长2 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME3 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室3 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself3 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董4 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee4 小时前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa4 小时前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai
四口鲸鱼爱吃盐4 小时前
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
人工智能·pytorch·分类