TensorFlow入门(十四、数据读取机制(1))

TensorFlow的数据读取方式

TensorFlow的数据读取方式共有三种,分别是:

①预加载数据(Preloaded data)

预加载数据的方式,其实就是静态图(Graph)的模式。即将数据直接内嵌到Graph中,再把Graph传入Session中运行。

示例代码如下:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

a = tf.constant([[5,2]])
b = tf.constant([[1],[3]])
c = tf.matmul(a,b)

init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    print(sess.run(c))

②先产生数据,再喂数据(Feeding)

先生产数据,通过feed_dict喂数据(Feeding)的方式。

示例代码如下:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

a = tf.placeholder(tf.int16)
b = tf.placeholder(tf.int16)
c = tf.add(a,b)

a1 = 6
b1 = 8

init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    print(sess.run(c,feed_dict = {a:a1,b:b1}))

③直接从文件中读取(Reading from file)

前两种方法虽然方便,但无法满足大型数据集训练时对速度要高效、内存消耗要小的要求。因此,TensorFlow提供了第三种方式,即在静态图(Graph)中定义好文件读取的方法,TensorFlow自动从文件(也就是文本或图片)中读取数据,然后解码成可用的样本集。

从文件读取数据的流程主要分为四个步骤:

①创建文件,准备数据

②创建文件名队列,将已准备的文件,按照随机顺序放入队列

③创建Reader,读取文件

④将读取的内容解码后输出

示例代码如下:

生成文件

python 复制代码
import csv

file_name = "file.csv"
with open(file_name,"w",newline = "") as csvfile:
    writer = csv.writer(csvfile, dialect = "excel")
    with open("data1.txt","r") as file_txt:
        for line in file_txt:
            line_datas = str(line).strip("\n").split(",")
            print(line_datas)
            writer.writerow(line_datas)

data1.txt的存放位置如下图,代码执行后会生成file.csv文件

读取文件

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

#要保存后csv格式的文件名
file_name_string = "file.csv"
filename_queue = tf.train.string_input_producer([file_name_string])
#定义reader,每次一行
reader = tf.TextLineReader()
key,value = reader.read(filename_queue)
#定义decoder
var1,var2 = tf.decode_csv(value,record_defaults = [[1.0],[1.0]])

#运行图
init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    sess.run(tf.local_variables_initializer())
    #创建一个协调器,管理线程
    coord = tf.train.Coordinator()
    #启动QueueRunner,此时文件名队列已经进队
    threads = tf.train.start_queue_runners(coord = coord)
    for row in enumerate(open(file_name_string,"r")):
        e_val,l_val = sess.run([var1,var2])
        print(e_val,l_val)
    coord.request_stop()
    coord.join(threads)

读取图片

示例代码如下:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

import os
import matplotlib.pyplot as plt

file_name = os.listdir("./image")
file_list = [os.path.join("./image",file) for file in file_name]

#创建输入队列,默认顺序打乱
filename_queue = tf.train.string_input_producer(file_list,shuffle = True,num_epochs = 2)
key,image = tf.WholeFileReader().read(filename_queue)
#解码成tf中图像格式
image = tf.image.decode_jpeg(image)

with tf.Session() as sess:
    sess.run(tf.local_variables_initializer())
    #创建一个协调器,管理线程
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(coord = coord)
    for _ in file_list:
        #执行
        img = image.eval()
        plt.figure(1)
        plt.imshow(img)
        plt.show()
    coord.request_stop()
    coord.join(threads)
相关推荐
wuhanwhite1 小时前
2025:OpenAI的“七十二变”?
人工智能·openai·语音识别
懒大王爱吃狼1 小时前
Python 向量检索库Faiss使用
开发语言·python·自动化·python基础·python教程
XianxinMao1 小时前
BitNet a4.8:通过4位激活实现1位大语言模型的高效内存推理
人工智能·语言模型·自然语言处理
一水鉴天2 小时前
智能工厂的设计软件 应用场景的一个例子:为AI聊天工具添加一个知识系统 之11 方案再探之2 项目文件(修改稿1)
人工智能
KeyPan2 小时前
【视觉SLAM:八、后端Ⅰ】
人工智能·数码相机·算法·机器学习·计算机视觉
StarCap2 小时前
【论文阅读】Reducing Activation Recomputation in Large Transformer Models
论文阅读·深度学习·transformer
好评笔记2 小时前
多模态论文笔记——Coca(副)
论文阅读·人工智能·深度学习·计算机视觉·transformer·coca·dalle2
好评笔记2 小时前
多模态论文笔记——Coca
人工智能·深度学习·计算机视觉·aigc·transformer·多模态·coca
何大春2 小时前
Quo Vadis, Anomaly Detection? LLMs and VLMs in the Spotlight 论文阅读
论文阅读·人工智能·深度学习·论文笔记
Jackilina_Stone2 小时前
【论文阅读笔记】SCI算法与代码 | 低照度图像增强 | 2022.4.21
论文阅读·人工智能·笔记·python·算法·计算机视觉