文章目录
- [第 7 讲 视觉里程计1](#第 7 讲 视觉里程计1)
-
- [7.1 特征点法](#7.1 特征点法)
-
- [7.1.1 特征点](#7.1.1 特征点)
- [7.1.2 ORB 特征](#7.1.2 ORB 特征)
-
- [FAST 关键点 ⟹ \Longrightarrow ⟹ Oriented FAST](#FAST 关键点 ⟹ \Longrightarrow ⟹ Oriented FAST)
- [BRIEF 描述子](#BRIEF 描述子)
- [7.1.3 特征匹配](#7.1.3 特征匹配)
- [7.2 实践 【Code】](#7.2 实践 【Code】)
-
-
-
- [本讲 CMakeLists.txt](#本讲 CMakeLists.txt)
-
- [7.2.1 使用 OpenCV 进行 ORB 的特征匹配 【Code】](#7.2.1 使用 OpenCV 进行 ORB 的特征匹配 【Code】)
- [7.2.2 手写 ORB 特征](#7.2.2 手写 ORB 特征)
-
- [估计 相机运动【相机位姿 估计】 3种情形 【对极几何、ICP、PnP】](#估计 相机运动【相机位姿 估计】 3种情形 【对极几何、ICP、PnP】)
- [7.3 2D-2D: 对极几何 单目相机(无距离信息)](#7.3 2D-2D: 对极几何 单目相机(无距离信息))
-
- [7.3.2 本质矩阵 E \bm{E} E](#7.3.2 本质矩阵 E \bm{E} E)
- [7.3.3 单应矩阵(Homography)【墙、地面】](#7.3.3 单应矩阵(Homography)【墙、地面】)
- [7.4 实践:对极约束 求解相机运动 【Code】](#7.4 实践:对极约束 求解相机运动 【Code】)
- [7.5 三角测量](#7.5 三角测量)
- [7.6 实践: 已知相机位姿,通过三角测量求特征点的空间位置 【Code】](#7.6 实践: 已知相机位姿,通过三角测量求特征点的空间位置 【Code】)
-
- [7.6.2 三角测量的矛盾 : 增加平移 Yes or No](#7.6.2 三角测量的矛盾 : 增加平移 Yes or No)
- [7.7 3D-2D: PnP (Perspective-n-Point) 【最重要】](#7.7 3D-2D: PnP (Perspective-n-Point) 【最重要】)
-
- [7.7.1 直接线性变换(DLT)](#7.7.1 直接线性变换(DLT))
- [7.7.2 P3P 【3对点 估计位姿】](#7.7.2 P3P 【3对点 估计位姿】)
- [7.7.3 最小化 重投影误差 求解PnP](#7.7.3 最小化 重投影误差 求解PnP)
- [7.8 实践: 求解 PnP 【Code】](#7.8 实践: 求解 PnP 【Code】)
- [7.9 3D-3D: ICP(Iterative Closest Point, ICP,迭代最近点) 已知两个图的深度](#7.9 3D-3D: ICP(Iterative Closest Point, ICP,迭代最近点) 已知两个图的深度)
-
- [7.9.1 SVD 方法](#7.9.1 SVD 方法)
- [7.9.2 非线性优化方法](#7.9.2 非线性优化方法)
- [7.10 使用 SVD 及 非线性优化 来求解 ICP 【Code】](#7.10 使用 SVD 及 非线性优化 来求解 ICP 【Code】)
- 其它
-
-
- [查看opencv 版本命令](#查看opencv 版本命令)
-
第 7 讲 视觉里程计1
图像特征点
在单幅 图像中 提取特征点 及 多幅图像 中 匹配特征点 的方法
对极几何 恢复图像之间 的 摄像机 的三维运动
PNP ICP
后续内容: 4 个模块 (视觉里程计、后端优化、回环检测、地图构建)
什么是特征点、如何提取和匹配特征点 、如何根据配对的特征点估计相机运动。
7.1 特征点法
前端【视觉里程计】
: 根据相邻图像的信息 估计 相机运动,给后端提供初值基础。
基于特征点法 的前端: 对光照、动态物体不敏感。
视觉里程计 的两大类 算法: 特征点法 和 直接法。
- 如何提取、匹配图像特征点,然后估计两帧之间的相机运动和场景结构。【两帧间视觉里程计】
- 也称为
两视图几何 (Two-view geometry)
7.1.1 特征点
视觉里程计的核心: 如何根据图像 估计相机运动
有代表性的点
经典 SLAM 模型:路标
视觉SLAM:图像特征 ⟺ \iff ⟺ 路标
灰度值: 受光照、形变、物体材质影响严重,不稳定。
角点 、边缘、区块
角点: 在不同图像之间 的 辨识度 更强。
2000年以前提出的特征:
更加稳定 的局部图像特征:
可重复:相同的特征 可在不同图像中找到
可区别: 不同特征 表达不同
高效率: 同一图像,特征点的数量 远小于 像素数量。
本地性: 特征 仅与 一小片 图像区域相关。 【局部性?】
SIFT(尺度不变特征变换, Scale-Invariant Feature Transform)
计算量大
在一张图像中计算SIFT特征点 ⟺ \iff ⟺ 提取SIFT关键点, 并计算SIFT描述子。
关键点: 特征点的位置、朝向、大小等
描述子: 描述 该关键点 周围像素的信息。
两个特征点
的描述子
在向量空间上的距离相近
⟺ \iff ⟺ 同样的特征点
ORB(Oriented FAST and Rotated BRIEF)
: 特征子具有旋转、尺度不变性,速度提升。
质量和性能之间的折中 成本、速度、匹配效果
7.1.2 ORB 特征
ORB贡献 :
FAST角点提取 计算了 特征点的方向, 为后续 BRIEF描述子 增加了旋转不变性。
FAST 关键点 ⟹ \Longrightarrow ⟹ Oriented FAST
FAST 一种角点 检测 局部像素 灰度变化 明显的地方。 速度快
只比较 像素亮度 大小
预测试 : 排除绝大多数不是角点 的像素。 加速 角点 检测
因为 一般要求 16个点里 N = 12 且连续, 因此 根据 这个间隔 4 要是超过两个点,就无法满足条件了。
避免 角点集中:在一定区域内 仅保留对应极大值的角点。非极大值抑制(Non-maximal suppression)
- Code 非极大值抑制 算法
优点:速度快【仅比较像素间亮度的差异】
不足:1、重复性不强, 分布不均匀。
2、不具有 方向信息。 ⟹ \Longrightarrow ⟹ 灰度质心法(Intensity Centroid)
3、固定取半径为 3 的圆, 存在尺度问题 远看是角点,近看不是 ⟹ \Longrightarrow ⟹ 构建图像金字塔
FAST ⟹ \Longrightarrow ⟹ ORB 中的 Oriented FAST 【尺度+旋转】
质心: 以 图像块 灰度值 作为权重的中心
BRIEF 描述子
原始的BRIEF 描述子 不具有旋转不变性,在图像发生旋转时容易丢失。
7.1.3 特征匹配
特征匹配 数据关联 当前看到的路标与之前看到的路标之间的对应关系。
- 匹配 描述子
场景中 经常存在 大量重复纹理,特征描述相似 ⟶ \longrightarrow ⟶ 误匹配
两个二进制串之间的汉明距离------ 不同位数 的个数。
快速近似最近邻 (FLANN)
适用场景:匹配点数量极多
7.2 实践 【Code】
本讲 CMakeLists.txt
CMakeLists.txt
bash
cmake_minimum_required(VERSION 2.8)
project(vo1)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_BUILD_TYPE "Release")
add_definitions("-DENABLE_SSE")
set(CMAKE_CXX_FLAGS "-std=c++14 -O2 ${SSE_FLAGS} -msse4")
list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
find_package(OpenCV 4.2.0 REQUIRED)
find_package(G2O REQUIRED)
find_package(Sophus REQUIRED)
include_directories(
${OpenCV_INCLUDE_DIRS}
${G2O_INCLUDE_DIRS}
${Sophus_INCLUDE_DIRS}
"/usr/include/eigen3/"
)
add_executable(orb_cv orb_cv.cpp)
target_link_libraries(orb_cv ${OpenCV_LIBS})
#[[ # 块注释,用于选择 只运行 某个.cpp #[[]]
add_executable(orb_self orb_self.cpp)
target_link_libraries(orb_self ${OpenCV_LIBS})
# add_executable( pose_estimation_2d2d pose_estimation_2d2d.cpp extra.cpp ) # use this if in OpenCV2
add_executable(pose_estimation_2d2d pose_estimation_2d2d.cpp)
target_link_libraries(pose_estimation_2d2d ${OpenCV_LIBS})
# # add_executable( triangulation triangulation.cpp extra.cpp) # use this if in opencv2
add_executable(triangulation triangulation.cpp)
target_link_libraries(triangulation ${OpenCV_LIBS})
add_executable(pose_estimation_3d2d pose_estimation_3d2d.cpp)
target_link_libraries(pose_estimation_3d2d
g2o_core g2o_stuff
${OpenCV_LIBS}
${Sophus_LIBRARIES})
add_executable(pose_estimation_3d3d pose_estimation_3d3d.cpp)
target_link_libraries(pose_estimation_3d3d
g2o_core g2o_stuff
${OpenCV_LIBS}
${Sophus_LIBRARIES})
]]
7.2.1 使用 OpenCV 进行 ORB 的特征匹配 【Code】
报错:
bash
/home/xixi/Downloads/slambook2-master/ch7/orb_cv.cpp:16:31: error: 'CV_LOAD_IMAGE_COLOR' was not declared in this scope
16 | Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR);
bash
mkdir build && cd build
cmake ..
make
./orb_cv ../1.png ../2.png
orb_cv.cpp
cpp
#include <iostream>
#include <opencv4/opencv2/core/core.hpp>
#include <opencv4/opencv2/features2d/features2d.hpp>
#include <opencv4/opencv2/highgui/highgui.hpp>
#include <chrono>
using namespace std;
using namespace cv;
int main(int argc, char **argv) {
if (argc != 3) {
cout << "usage: feature_extraction img1 img2" << endl;
return 1;
}
//-- 读取图像
Mat img_1 = imread(argv[1], cv::IMREAD_COLOR); //OpenCV4 需要 改这里
Mat img_2 = imread(argv[2], cv::IMREAD_COLOR);
assert(img_1.data != nullptr && img_2.data != nullptr);
//-- 初始化
std::vector<KeyPoint> keypoints_1, keypoints_2;
Mat descriptors_1, descriptors_2;
Ptr<FeatureDetector> detector = ORB::create();
Ptr<DescriptorExtractor> descriptor = ORB::create();
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
//-- 第一步:检测 Oriented FAST 角点位置
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
detector->detect(img_1, keypoints_1);
detector->detect(img_2, keypoints_2);
//-- 第二步:根据角点位置计算 BRIEF 描述子
descriptor->compute(img_1, keypoints_1, descriptors_1);
descriptor->compute(img_2, keypoints_2, descriptors_2);
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "extract ORB cost = " << time_used.count() << " seconds. " << endl;
Mat outimg1;
drawKeypoints(img_1, keypoints_1, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT);
imshow("ORB features", outimg1);
//-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
vector<DMatch> matches;
t1 = chrono::steady_clock::now();
matcher->match(descriptors_1, descriptors_2, matches);
t2 = chrono::steady_clock::now();
time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "match ORB cost = " << time_used.count() << " seconds. " << endl;
//-- 第四步:匹配点对筛选
// 计算最小距离和最大距离
auto min_max = minmax_element(matches.begin(), matches.end(),
[](const DMatch &m1, const DMatch &m2) { return m1.distance < m2.distance; });
double min_dist = min_max.first->distance;
double max_dist = min_max.second->distance;
printf("-- Max dist : %f \n", max_dist);
printf("-- Min dist : %f \n", min_dist);
//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
std::vector<DMatch> good_matches;
for (int i = 0; i < descriptors_1.rows; i++) {
if (matches[i].distance <= max(2 * min_dist, 30.0)) {
good_matches.push_back(matches[i]);
}
}
//-- 第五步:绘制匹配结果
Mat img_match;
Mat img_goodmatch;
drawMatches(img_1, keypoints_1, img_2, keypoints_2, matches, img_match);
drawMatches(img_1, keypoints_1, img_2, keypoints_2, good_matches, img_goodmatch);
imshow("all matches", img_match);
imshow("good matches", img_goodmatch);
waitKey(0);
return 0;
}
去除误匹配: 汉明距离小于最小距离的 2 倍
7.2.2 手写 ORB 特征
改图片 路径
bash
cd build
cmake ..
make
./orb_self
orb_self.cpp
cpp
//
// Created by xiang on 18-11-25.
//
#include <opencv4/opencv2/opencv.hpp>
#include <string>
#include <nmmintrin.h>
#include <chrono>
using namespace std;
// global variables
string first_file = "../1.png"; // 要 改路径 如果 cd build 的话
string second_file = "../2.png";
// 32 bit unsigned int, will have 8, 8x32=256
typedef vector<uint32_t> DescType; // Descriptor type
/**
* compute descriptor of orb keypoints
* @param img input image
* @param keypoints detected fast keypoints
* @param descriptors descriptors
*
* NOTE: if a keypoint goes outside the image boundary (8 pixels), descriptors will not be computed and will be left as
* empty
*/
void ComputeORB(const cv::Mat &img, vector<cv::KeyPoint> &keypoints, vector<DescType> &descriptors);
/**
* brute-force match two sets of descriptors
* @param desc1 the first descriptor
* @param desc2 the second descriptor
* @param matches matches of two images
*/
void BfMatch(const vector<DescType> &desc1, const vector<DescType> &desc2, vector<cv::DMatch> &matches);
int main(int argc, char **argv) {
// load image
cv::Mat first_image = cv::imread(first_file, 0);
cv::Mat second_image = cv::imread(second_file, 0);
assert(first_image.data != nullptr && second_image.data != nullptr);
// detect FAST keypoints1 using threshold=40
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
vector<cv::KeyPoint> keypoints1;
cv::FAST(first_image, keypoints1, 40);
vector<DescType> descriptor1;
ComputeORB(first_image, keypoints1, descriptor1);
// same for the second
vector<cv::KeyPoint> keypoints2;
vector<DescType> descriptor2;
cv::FAST(second_image, keypoints2, 40);
ComputeORB(second_image, keypoints2, descriptor2);
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "extract ORB cost = " << time_used.count() << " seconds. " << endl;
// find matches
vector<cv::DMatch> matches;
t1 = chrono::steady_clock::now();
BfMatch(descriptor1, descriptor2, matches);
t2 = chrono::steady_clock::now();
time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "match ORB cost = " << time_used.count() << " seconds. " << endl;
cout << "matches: " << matches.size() << endl;
// plot the matches
cv::Mat image_show;
cv::drawMatches(first_image, keypoints1, second_image, keypoints2, matches, image_show);
cv::imshow("matches", image_show);
cv::imwrite("matches.png", image_show);
cv::waitKey(0);
cout << "done." << endl;
return 0;
}
// -------------------------------------------------------------------------------------------------- //
// ORB pattern
int ORB_pattern[256 * 4] = {
8, -3, 9, 5/*mean (0), correlation (0)*/,
4, 2, 7, -12/*mean (1.12461e-05), correlation (0.0437584)*/,
-11, 9, -8, 2/*mean (3.37382e-05), correlation (0.0617409)*/,
7, -12, 12, -13/*mean (5.62303e-05), correlation (0.0636977)*/,
2, -13, 2, 12/*mean (0.000134953), correlation (0.085099)*/,
1, -7, 1, 6/*mean (0.000528565), correlation (0.0857175)*/,
-2, -10, -2, -4/*mean (0.0188821), correlation (0.0985774)*/,
-13, -13, -11, -8/*mean (0.0363135), correlation (0.0899616)*/,
-13, -3, -12, -9/*mean (0.121806), correlation (0.099849)*/,
10, 4, 11, 9/*mean (0.122065), correlation (0.093285)*/,
-13, -8, -8, -9/*mean (0.162787), correlation (0.0942748)*/,
-11, 7, -9, 12/*mean (0.21561), correlation (0.0974438)*/,
7, 7, 12, 6/*mean (0.160583), correlation (0.130064)*/,
-4, -5, -3, 0/*mean (0.228171), correlation (0.132998)*/,
-13, 2, -12, -3/*mean (0.00997526), correlation (0.145926)*/,
-9, 0, -7, 5/*mean (0.198234), correlation (0.143636)*/,
12, -6, 12, -1/*mean (0.0676226), correlation (0.16689)*/,
-3, 6, -2, 12/*mean (0.166847), correlation (0.171682)*/,
-6, -13, -4, -8/*mean (0.101215), correlation (0.179716)*/,
11, -13, 12, -8/*mean (0.200641), correlation (0.192279)*/,
4, 7, 5, 1/*mean (0.205106), correlation (0.186848)*/,
5, -3, 10, -3/*mean (0.234908), correlation (0.192319)*/,
3, -7, 6, 12/*mean (0.0709964), correlation (0.210872)*/,
-8, -7, -6, -2/*mean (0.0939834), correlation (0.212589)*/,
-2, 11, -1, -10/*mean (0.127778), correlation (0.20866)*/,
-13, 12, -8, 10/*mean (0.14783), correlation (0.206356)*/,
-7, 3, -5, -3/*mean (0.182141), correlation (0.198942)*/,
-4, 2, -3, 7/*mean (0.188237), correlation (0.21384)*/,
-10, -12, -6, 11/*mean (0.14865), correlation (0.23571)*/,
5, -12, 6, -7/*mean (0.222312), correlation (0.23324)*/,
5, -6, 7, -1/*mean (0.229082), correlation (0.23389)*/,
1, 0, 4, -5/*mean (0.241577), correlation (0.215286)*/,
9, 11, 11, -13/*mean (0.00338507), correlation (0.251373)*/,
4, 7, 4, 12/*mean (0.131005), correlation (0.257622)*/,
2, -1, 4, 4/*mean (0.152755), correlation (0.255205)*/,
-4, -12, -2, 7/*mean (0.182771), correlation (0.244867)*/,
-8, -5, -7, -10/*mean (0.186898), correlation (0.23901)*/,
4, 11, 9, 12/*mean (0.226226), correlation (0.258255)*/,
0, -8, 1, -13/*mean (0.0897886), correlation (0.274827)*/,
-13, -2, -8, 2/*mean (0.148774), correlation (0.28065)*/,
-3, -2, -2, 3/*mean (0.153048), correlation (0.283063)*/,
-6, 9, -4, -9/*mean (0.169523), correlation (0.278248)*/,
8, 12, 10, 7/*mean (0.225337), correlation (0.282851)*/,
0, 9, 1, 3/*mean (0.226687), correlation (0.278734)*/,
7, -5, 11, -10/*mean (0.00693882), correlation (0.305161)*/,
-13, -6, -11, 0/*mean (0.0227283), correlation (0.300181)*/,
10, 7, 12, 1/*mean (0.125517), correlation (0.31089)*/,
-6, -3, -6, 12/*mean (0.131748), correlation (0.312779)*/,
10, -9, 12, -4/*mean (0.144827), correlation (0.292797)*/,
-13, 8, -8, -12/*mean (0.149202), correlation (0.308918)*/,
-13, 0, -8, -4/*mean (0.160909), correlation (0.310013)*/,
3, 3, 7, 8/*mean (0.177755), correlation (0.309394)*/,
5, 7, 10, -7/*mean (0.212337), correlation (0.310315)*/,
-1, 7, 1, -12/*mean (0.214429), correlation (0.311933)*/,
3, -10, 5, 6/*mean (0.235807), correlation (0.313104)*/,
2, -4, 3, -10/*mean (0.00494827), correlation (0.344948)*/,
-13, 0, -13, 5/*mean (0.0549145), correlation (0.344675)*/,
-13, -7, -12, 12/*mean (0.103385), correlation (0.342715)*/,
-13, 3, -11, 8/*mean (0.134222), correlation (0.322922)*/,
-7, 12, -4, 7/*mean (0.153284), correlation (0.337061)*/,
6, -10, 12, 8/*mean (0.154881), correlation (0.329257)*/,
-9, -1, -7, -6/*mean (0.200967), correlation (0.33312)*/,
-2, -5, 0, 12/*mean (0.201518), correlation (0.340635)*/,
-12, 5, -7, 5/*mean (0.207805), correlation (0.335631)*/,
3, -10, 8, -13/*mean (0.224438), correlation (0.34504)*/,
-7, -7, -4, 5/*mean (0.239361), correlation (0.338053)*/,
-3, -2, -1, -7/*mean (0.240744), correlation (0.344322)*/,
2, 9, 5, -11/*mean (0.242949), correlation (0.34145)*/,
-11, -13, -5, -13/*mean (0.244028), correlation (0.336861)*/,
-1, 6, 0, -1/*mean (0.247571), correlation (0.343684)*/,
5, -3, 5, 2/*mean (0.000697256), correlation (0.357265)*/,
-4, -13, -4, 12/*mean (0.00213675), correlation (0.373827)*/,
-9, -6, -9, 6/*mean (0.0126856), correlation (0.373938)*/,
-12, -10, -8, -4/*mean (0.0152497), correlation (0.364237)*/,
10, 2, 12, -3/*mean (0.0299933), correlation (0.345292)*/,
7, 12, 12, 12/*mean (0.0307242), correlation (0.366299)*/,
-7, -13, -6, 5/*mean (0.0534975), correlation (0.368357)*/,
-4, 9, -3, 4/*mean (0.099865), correlation (0.372276)*/,
7, -1, 12, 2/*mean (0.117083), correlation (0.364529)*/,
-7, 6, -5, 1/*mean (0.126125), correlation (0.369606)*/,
-13, 11, -12, 5/*mean (0.130364), correlation (0.358502)*/,
-3, 7, -2, -6/*mean (0.131691), correlation (0.375531)*/,
7, -8, 12, -7/*mean (0.160166), correlation (0.379508)*/,
-13, -7, -11, -12/*mean (0.167848), correlation (0.353343)*/,
1, -3, 12, 12/*mean (0.183378), correlation (0.371916)*/,
2, -6, 3, 0/*mean (0.228711), correlation (0.371761)*/,
-4, 3, -2, -13/*mean (0.247211), correlation (0.364063)*/,
-1, -13, 1, 9/*mean (0.249325), correlation (0.378139)*/,
7, 1, 8, -6/*mean (0.000652272), correlation (0.411682)*/,
1, -1, 3, 12/*mean (0.00248538), correlation (0.392988)*/,
9, 1, 12, 6/*mean (0.0206815), correlation (0.386106)*/,
-1, -9, -1, 3/*mean (0.0364485), correlation (0.410752)*/,
-13, -13, -10, 5/*mean (0.0376068), correlation (0.398374)*/,
7, 7, 10, 12/*mean (0.0424202), correlation (0.405663)*/,
12, -5, 12, 9/*mean (0.0942645), correlation (0.410422)*/,
6, 3, 7, 11/*mean (0.1074), correlation (0.413224)*/,
5, -13, 6, 10/*mean (0.109256), correlation (0.408646)*/,
2, -12, 2, 3/*mean (0.131691), correlation (0.416076)*/,
3, 8, 4, -6/*mean (0.165081), correlation (0.417569)*/,
2, 6, 12, -13/*mean (0.171874), correlation (0.408471)*/,
9, -12, 10, 3/*mean (0.175146), correlation (0.41296)*/,
-8, 4, -7, 9/*mean (0.183682), correlation (0.402956)*/,
-11, 12, -4, -6/*mean (0.184672), correlation (0.416125)*/,
1, 12, 2, -8/*mean (0.191487), correlation (0.386696)*/,
6, -9, 7, -4/*mean (0.192668), correlation (0.394771)*/,
2, 3, 3, -2/*mean (0.200157), correlation (0.408303)*/,
6, 3, 11, 0/*mean (0.204588), correlation (0.411762)*/,
3, -3, 8, -8/*mean (0.205904), correlation (0.416294)*/,
7, 8, 9, 3/*mean (0.213237), correlation (0.409306)*/,
-11, -5, -6, -4/*mean (0.243444), correlation (0.395069)*/,
-10, 11, -5, 10/*mean (0.247672), correlation (0.413392)*/,
-5, -8, -3, 12/*mean (0.24774), correlation (0.411416)*/,
-10, 5, -9, 0/*mean (0.00213675), correlation (0.454003)*/,
8, -1, 12, -6/*mean (0.0293635), correlation (0.455368)*/,
4, -6, 6, -11/*mean (0.0404971), correlation (0.457393)*/,
-10, 12, -8, 7/*mean (0.0481107), correlation (0.448364)*/,
4, -2, 6, 7/*mean (0.050641), correlation (0.455019)*/,
-2, 0, -2, 12/*mean (0.0525978), correlation (0.44338)*/,
-5, -8, -5, 2/*mean (0.0629667), correlation (0.457096)*/,
7, -6, 10, 12/*mean (0.0653846), correlation (0.445623)*/,
-9, -13, -8, -8/*mean (0.0858749), correlation (0.449789)*/,
-5, -13, -5, -2/*mean (0.122402), correlation (0.450201)*/,
8, -8, 9, -13/*mean (0.125416), correlation (0.453224)*/,
-9, -11, -9, 0/*mean (0.130128), correlation (0.458724)*/,
1, -8, 1, -2/*mean (0.132467), correlation (0.440133)*/,
7, -4, 9, 1/*mean (0.132692), correlation (0.454)*/,
-2, 1, -1, -4/*mean (0.135695), correlation (0.455739)*/,
11, -6, 12, -11/*mean (0.142904), correlation (0.446114)*/,
-12, -9, -6, 4/*mean (0.146165), correlation (0.451473)*/,
3, 7, 7, 12/*mean (0.147627), correlation (0.456643)*/,
5, 5, 10, 8/*mean (0.152901), correlation (0.455036)*/,
0, -4, 2, 8/*mean (0.167083), correlation (0.459315)*/,
-9, 12, -5, -13/*mean (0.173234), correlation (0.454706)*/,
0, 7, 2, 12/*mean (0.18312), correlation (0.433855)*/,
-1, 2, 1, 7/*mean (0.185504), correlation (0.443838)*/,
5, 11, 7, -9/*mean (0.185706), correlation (0.451123)*/,
3, 5, 6, -8/*mean (0.188968), correlation (0.455808)*/,
-13, -4, -8, 9/*mean (0.191667), correlation (0.459128)*/,
-5, 9, -3, -3/*mean (0.193196), correlation (0.458364)*/,
-4, -7, -3, -12/*mean (0.196536), correlation (0.455782)*/,
6, 5, 8, 0/*mean (0.1972), correlation (0.450481)*/,
-7, 6, -6, 12/*mean (0.199438), correlation (0.458156)*/,
-13, 6, -5, -2/*mean (0.211224), correlation (0.449548)*/,
1, -10, 3, 10/*mean (0.211718), correlation (0.440606)*/,
4, 1, 8, -4/*mean (0.213034), correlation (0.443177)*/,
-2, -2, 2, -13/*mean (0.234334), correlation (0.455304)*/,
2, -12, 12, 12/*mean (0.235684), correlation (0.443436)*/,
-2, -13, 0, -6/*mean (0.237674), correlation (0.452525)*/,
4, 1, 9, 3/*mean (0.23962), correlation (0.444824)*/,
-6, -10, -3, -5/*mean (0.248459), correlation (0.439621)*/,
-3, -13, -1, 1/*mean (0.249505), correlation (0.456666)*/,
7, 5, 12, -11/*mean (0.00119208), correlation (0.495466)*/,
4, -2, 5, -7/*mean (0.00372245), correlation (0.484214)*/,
-13, 9, -9, -5/*mean (0.00741116), correlation (0.499854)*/,
7, 1, 8, 6/*mean (0.0208952), correlation (0.499773)*/,
7, -8, 7, 6/*mean (0.0220085), correlation (0.501609)*/,
-7, -4, -7, 1/*mean (0.0233806), correlation (0.496568)*/,
-8, 11, -7, -8/*mean (0.0236505), correlation (0.489719)*/,
-13, 6, -12, -8/*mean (0.0268781), correlation (0.503487)*/,
2, 4, 3, 9/*mean (0.0323324), correlation (0.501938)*/,
10, -5, 12, 3/*mean (0.0399235), correlation (0.494029)*/,
-6, -5, -6, 7/*mean (0.0420153), correlation (0.486579)*/,
8, -3, 9, -8/*mean (0.0548021), correlation (0.484237)*/,
2, -12, 2, 8/*mean (0.0616622), correlation (0.496642)*/,
-11, -2, -10, 3/*mean (0.0627755), correlation (0.498563)*/,
-12, -13, -7, -9/*mean (0.0829622), correlation (0.495491)*/,
-11, 0, -10, -5/*mean (0.0843342), correlation (0.487146)*/,
5, -3, 11, 8/*mean (0.0929937), correlation (0.502315)*/,
-2, -13, -1, 12/*mean (0.113327), correlation (0.48941)*/,
-1, -8, 0, 9/*mean (0.132119), correlation (0.467268)*/,
-13, -11, -12, -5/*mean (0.136269), correlation (0.498771)*/,
-10, -2, -10, 11/*mean (0.142173), correlation (0.498714)*/,
-3, 9, -2, -13/*mean (0.144141), correlation (0.491973)*/,
2, -3, 3, 2/*mean (0.14892), correlation (0.500782)*/,
-9, -13, -4, 0/*mean (0.150371), correlation (0.498211)*/,
-4, 6, -3, -10/*mean (0.152159), correlation (0.495547)*/,
-4, 12, -2, -7/*mean (0.156152), correlation (0.496925)*/,
-6, -11, -4, 9/*mean (0.15749), correlation (0.499222)*/,
6, -3, 6, 11/*mean (0.159211), correlation (0.503821)*/,
-13, 11, -5, 5/*mean (0.162427), correlation (0.501907)*/,
11, 11, 12, 6/*mean (0.16652), correlation (0.497632)*/,
7, -5, 12, -2/*mean (0.169141), correlation (0.484474)*/,
-1, 12, 0, 7/*mean (0.169456), correlation (0.495339)*/,
-4, -8, -3, -2/*mean (0.171457), correlation (0.487251)*/,
-7, 1, -6, 7/*mean (0.175), correlation (0.500024)*/,
-13, -12, -8, -13/*mean (0.175866), correlation (0.497523)*/,
-7, -2, -6, -8/*mean (0.178273), correlation (0.501854)*/,
-8, 5, -6, -9/*mean (0.181107), correlation (0.494888)*/,
-5, -1, -4, 5/*mean (0.190227), correlation (0.482557)*/,
-13, 7, -8, 10/*mean (0.196739), correlation (0.496503)*/,
1, 5, 5, -13/*mean (0.19973), correlation (0.499759)*/,
1, 0, 10, -13/*mean (0.204465), correlation (0.49873)*/,
9, 12, 10, -1/*mean (0.209334), correlation (0.49063)*/,
5, -8, 10, -9/*mean (0.211134), correlation (0.503011)*/,
-1, 11, 1, -13/*mean (0.212), correlation (0.499414)*/,
-9, -3, -6, 2/*mean (0.212168), correlation (0.480739)*/,
-1, -10, 1, 12/*mean (0.212731), correlation (0.502523)*/,
-13, 1, -8, -10/*mean (0.21327), correlation (0.489786)*/,
8, -11, 10, -6/*mean (0.214159), correlation (0.488246)*/,
2, -13, 3, -6/*mean (0.216993), correlation (0.50287)*/,
7, -13, 12, -9/*mean (0.223639), correlation (0.470502)*/,
-10, -10, -5, -7/*mean (0.224089), correlation (0.500852)*/,
-10, -8, -8, -13/*mean (0.228666), correlation (0.502629)*/,
4, -6, 8, 5/*mean (0.22906), correlation (0.498305)*/,
3, 12, 8, -13/*mean (0.233378), correlation (0.503825)*/,
-4, 2, -3, -3/*mean (0.234323), correlation (0.476692)*/,
5, -13, 10, -12/*mean (0.236392), correlation (0.475462)*/,
4, -13, 5, -1/*mean (0.236842), correlation (0.504132)*/,
-9, 9, -4, 3/*mean (0.236977), correlation (0.497739)*/,
0, 3, 3, -9/*mean (0.24314), correlation (0.499398)*/,
-12, 1, -6, 1/*mean (0.243297), correlation (0.489447)*/,
3, 2, 4, -8/*mean (0.00155196), correlation (0.553496)*/,
-10, -10, -10, 9/*mean (0.00239541), correlation (0.54297)*/,
8, -13, 12, 12/*mean (0.0034413), correlation (0.544361)*/,
-8, -12, -6, -5/*mean (0.003565), correlation (0.551225)*/,
2, 2, 3, 7/*mean (0.00835583), correlation (0.55285)*/,
10, 6, 11, -8/*mean (0.00885065), correlation (0.540913)*/,
6, 8, 8, -12/*mean (0.0101552), correlation (0.551085)*/,
-7, 10, -6, 5/*mean (0.0102227), correlation (0.533635)*/,
-3, -9, -3, 9/*mean (0.0110211), correlation (0.543121)*/,
-1, -13, -1, 5/*mean (0.0113473), correlation (0.550173)*/,
-3, -7, -3, 4/*mean (0.0140913), correlation (0.554774)*/,
-8, -2, -8, 3/*mean (0.017049), correlation (0.55461)*/,
4, 2, 12, 12/*mean (0.01778), correlation (0.546921)*/,
2, -5, 3, 11/*mean (0.0224022), correlation (0.549667)*/,
6, -9, 11, -13/*mean (0.029161), correlation (0.546295)*/,
3, -1, 7, 12/*mean (0.0303081), correlation (0.548599)*/,
11, -1, 12, 4/*mean (0.0355151), correlation (0.523943)*/,
-3, 0, -3, 6/*mean (0.0417904), correlation (0.543395)*/,
4, -11, 4, 12/*mean (0.0487292), correlation (0.542818)*/,
2, -4, 2, 1/*mean (0.0575124), correlation (0.554888)*/,
-10, -6, -8, 1/*mean (0.0594242), correlation (0.544026)*/,
-13, 7, -11, 1/*mean (0.0597391), correlation (0.550524)*/,
-13, 12, -11, -13/*mean (0.0608974), correlation (0.55383)*/,
6, 0, 11, -13/*mean (0.065126), correlation (0.552006)*/,
0, -1, 1, 4/*mean (0.074224), correlation (0.546372)*/,
-13, 3, -9, -2/*mean (0.0808592), correlation (0.554875)*/,
-9, 8, -6, -3/*mean (0.0883378), correlation (0.551178)*/,
-13, -6, -8, -2/*mean (0.0901035), correlation (0.548446)*/,
5, -9, 8, 10/*mean (0.0949843), correlation (0.554694)*/,
2, 7, 3, -9/*mean (0.0994152), correlation (0.550979)*/,
-1, -6, -1, -1/*mean (0.10045), correlation (0.552714)*/,
9, 5, 11, -2/*mean (0.100686), correlation (0.552594)*/,
11, -3, 12, -8/*mean (0.101091), correlation (0.532394)*/,
3, 0, 3, 5/*mean (0.101147), correlation (0.525576)*/,
-1, 4, 0, 10/*mean (0.105263), correlation (0.531498)*/,
3, -6, 4, 5/*mean (0.110785), correlation (0.540491)*/,
-13, 0, -10, 5/*mean (0.112798), correlation (0.536582)*/,
5, 8, 12, 11/*mean (0.114181), correlation (0.555793)*/,
8, 9, 9, -6/*mean (0.117431), correlation (0.553763)*/,
7, -4, 8, -12/*mean (0.118522), correlation (0.553452)*/,
-10, 4, -10, 9/*mean (0.12094), correlation (0.554785)*/,
7, 3, 12, 4/*mean (0.122582), correlation (0.555825)*/,
9, -7, 10, -2/*mean (0.124978), correlation (0.549846)*/,
7, 0, 12, -2/*mean (0.127002), correlation (0.537452)*/,
-1, -6, 0, -11/*mean (0.127148), correlation (0.547401)*/
};
// compute the descriptor
void ComputeORB(const cv::Mat &img, vector<cv::KeyPoint> &keypoints, vector<DescType> &descriptors) {
const int half_patch_size = 8;
const int half_boundary = 16;
int bad_points = 0;
for (auto &kp: keypoints) {
if (kp.pt.x < half_boundary || kp.pt.y < half_boundary ||
kp.pt.x >= img.cols - half_boundary || kp.pt.y >= img.rows - half_boundary) {
// outside
bad_points++;
descriptors.push_back({});
continue;
}
float m01 = 0, m10 = 0;
for (int dx = -half_patch_size; dx < half_patch_size; ++dx) {
for (int dy = -half_patch_size; dy < half_patch_size; ++dy) {
uchar pixel = img.at<uchar>(kp.pt.y + dy, kp.pt.x + dx);
m10 += dx * pixel;
m01 += dy * pixel;
}
}
// angle should be arc tan(m01/m10);
float m_sqrt = sqrt(m01 * m01 + m10 * m10) + 1e-18; // avoid divide by zero
float sin_theta = m01 / m_sqrt;
float cos_theta = m10 / m_sqrt;
// compute the angle of this point
DescType desc(8, 0);
for (int i = 0; i < 8; i++) {
uint32_t d = 0;
for (int k = 0; k < 32; k++) {
int idx_pq = i * 32 + k;
cv::Point2f p(ORB_pattern[idx_pq * 4], ORB_pattern[idx_pq * 4 + 1]);
cv::Point2f q(ORB_pattern[idx_pq * 4 + 2], ORB_pattern[idx_pq * 4 + 3]);
// rotate with theta
cv::Point2f pp = cv::Point2f(cos_theta * p.x - sin_theta * p.y, sin_theta * p.x + cos_theta * p.y)
+ kp.pt;
cv::Point2f qq = cv::Point2f(cos_theta * q.x - sin_theta * q.y, sin_theta * q.x + cos_theta * q.y)
+ kp.pt;
if (img.at<uchar>(pp.y, pp.x) < img.at<uchar>(qq.y, qq.x)) {
d |= 1 << k;
}
}
desc[i] = d;
}
descriptors.push_back(desc);
}
cout << "bad/total: " << bad_points << "/" << keypoints.size() << endl;
}
// brute-force matching
void BfMatch(const vector<DescType> &desc1, const vector<DescType> &desc2, vector<cv::DMatch> &matches) {
const int d_max = 40;
for (size_t i1 = 0; i1 < desc1.size(); ++i1) {
if (desc1[i1].empty()) continue;
cv::DMatch m{i1, 0, 256};
for (size_t i2 = 0; i2 < desc2.size(); ++i2) {
if (desc2[i2].empty()) continue;
int distance = 0;
for (int k = 0; k < 8; k++) {
distance += _mm_popcnt_u32(desc1[i1][k] ^ desc2[i2][k]);
}
if (distance < d_max && distance < m.distance) {
m.distance = distance;
m.trainIdx = i2;
}
}
if (m.distance < d_max) {
matches.push_back(m);
}
}
}
估计 相机运动【相机位姿 估计】 3种情形 【对极几何、ICP、PnP】
1、相机为单目 : 根据两组2D点 估计运动 对极几何
2、相机可获得距离信息(双目、RGB-D等):两组3D点 估计运动 ICP
3、一组 3D + 一组 2D : PnP
7.3 2D-2D: 对极几何 单目相机(无距离信息)
通过 二维图像点的对应关系, 恢复两帧之间摄像机的运动。
极平面(Epipolar plane)
: O 1 , O 2 , P 三点形成的平面 O_1, O_2, P三点形成的平面 O1,O2,P三点形成的平面
- 注意 点 P P P 是 O 1 p 1 O_1p_1 O1p1 延长线 和 O 2 p 2 O_2p_2 O2p2 延长线 的交点
极点(Epipoles)
: e 1 , e 2 e_1, e_2 e1,e2 【 O 1 O 2 O_1O_2 O1O2 连线 与 像平面 I 1 , I 2 I_1,I_2 I1,I2的交点】
极线(Epipolar line)
: p 1 e 1 ( l 1 ) 、 p 2 e 2 ( l 2 ) p_1e_1(l_1)、p_2e_2(l_2) p1e1(l1)、p2e2(l2)
基线
: O 1 O 2 O_1O_2 O1O2
像平面: I 1 , I 2 I_1,I_2 I1,I2
假设 I 1 I_1 I1 中特征点 p 1 p_1 p1 匹配到 I 2 I_2 I2 中特征点 p 2 p_2 p2
本质矩阵(Essential Matrix)
E = t ∧ R \bm{E} =\bm{t}^{\land}\bm{R} E=t∧R
基础矩阵(Fundamental Matrix)
F = K − T E K − 1 \bm{F}=\bm{K}^{-T}\bm{E}\bm{K}^{-1} F=K−TEK−1
- E \bm{E} E 和 F \bm{F} F 只差了相机内参 K \bm{K} K 部分
对于归一化坐标 x 1 , x 2 \bm{x}_1, \bm{x}_2 x1,x2 : x 2 T E x 1 = 0 \bm{x}_2^T\bm{E}\bm{x}_1=0 x2TEx1=0 【本质矩阵】
对于匹配的像素坐标 p 1 , p 2 \bm{p}_1, \bm{p}_2 p1,p2 : p 2 T F p 1 = 0 \bm{p}_2^T\bm{F}\bm{p}_1=0 p2TFp1=0 【基础矩阵】
对极约束作用:
给出了两个匹配点的空间位置关系,将相机位姿估计问题变为以下两步:
1、根据配对点的像素位置 求出 E \bm{E} E 或 F \bm{F} F
2、根据 E \bm{E} E 或 F \bm{F} F 求出 R , t \bm{R,t} R,t
以 E \bm{E} E 为例,如何求解这两个问题
7.3.2 本质矩阵 E \bm{E} E
求解 E \bm{E} E:
根据已经估得的本质矩阵 E \bm{E} E, 恢复相机的运动 R , t \bm{R,t} R,t
7.3.3 单应矩阵(Homography)【墙、地面】
单应矩阵(Homography) H \bm{H} H:描述两个平面之间的映射关系。
-
运动估计 适用场景:场景中的特征点都落在同一平面上(墙、地面等)
-
无人机携带的俯视相机 或 扫地机携带的顶视相机
求解单应矩阵 H \bm{H} H:
直接线性变换法(Direct Linear Transform, DLT)
7.4 实践:对极约束 求解相机运动 【Code】
报错:
bash
/home/xixi/Downloads/slambook2-master/ch7/pose_estimation_2d2d.cpp:36:31: error: 'CV_LOAD_IMAGE_COLOR' was not declared in this scope
36 | Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR);
| ^~~~~~~~~~~~~~~~~~~
/home/xixi/Downloads/slambook2-master/ch7/pose_estimation_2d2d.cpp: In function 'void pose_estimation_2d2d(std::vector<cv::KeyPoint>, std::vector<cv::KeyPoint>, std::vector<cv::DMatch>, cv::Mat&, cv::Mat&)':
/home/xixi/Downloads/slambook2-master/ch7/pose_estimation_2d2d.cpp:143:61: error: 'CV_FM_8POINT' was not declared in this scope
143 | fundamental_matrix = findFundamentalMat(points1, points2, CV_FM_8POINT);
| ^~~~~~~~~~~~
之前 遇到了问题,改了CmakeLists.txt 很多地方,遇到了别的问题【Segmentation fault (core dumped)】,卡了挺久。重新复制原版CmakeLists.txt ,只改了OpenCV版本,CMAKE标准改成14。
bash
cd build
cmake ..
make
./pose_estimation_2d2d ../1.png ../2.png
pose_estimation_2d2d.cpp
cpp
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
// #include "extra.h" // use this if in OpenCV2
using namespace std;
using namespace cv;
/****************************************************
* 本程序演示了如何使用2D-2D的特征匹配估计相机运动
* **************************************************/
void find_feature_matches(
const Mat &img_1, const Mat &img_2,
std::vector<KeyPoint> &keypoints_1,
std::vector<KeyPoint> &keypoints_2,
std::vector<DMatch> &matches);
void pose_estimation_2d2d(
std::vector<KeyPoint> keypoints_1,
std::vector<KeyPoint> keypoints_2,
std::vector<DMatch> matches,
Mat &R, Mat &t);
// 像素坐标转相机归一化坐标
Point2d pixel2cam(const Point2d &p, const Mat &K);
int main(int argc, char **argv) {
if (argc != 3) {
cout << "usage: pose_estimation_2d2d img1 img2" << endl;
return 1;
}
//-- 读取图像
Mat img_1 = imread(argv[1], IMREAD_COLOR); // OpenCV4 要改这里
Mat img_2 = imread(argv[2], IMREAD_COLOR);
assert(img_1.data && img_2.data && "Can not load images!");
vector<KeyPoint> keypoints_1, keypoints_2;
vector<DMatch> matches;
find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches);
cout << "一共找到了" << matches.size() << "组匹配点" << endl;
//-- 估计两张图像间运动
Mat R, t;
pose_estimation_2d2d(keypoints_1, keypoints_2, matches, R, t);
//-- 验证E=t^R*scale
Mat t_x =
(Mat_<double>(3, 3) << 0, -t.at<double>(2, 0), t.at<double>(1, 0),
t.at<double>(2, 0), 0, -t.at<double>(0, 0),
-t.at<double>(1, 0), t.at<double>(0, 0), 0);
cout << "t^R=" << endl << t_x * R << endl;
//-- 验证对极约束
Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
for (DMatch m: matches) {
Point2d pt1 = pixel2cam(keypoints_1[m.queryIdx].pt, K);
Mat y1 = (Mat_<double>(3, 1) << pt1.x, pt1.y, 1);
Point2d pt2 = pixel2cam(keypoints_2[m.trainIdx].pt, K);
Mat y2 = (Mat_<double>(3, 1) << pt2.x, pt2.y, 1);
Mat d = y2.t() * t_x * R * y1;
cout << "epipolar constraint = " << d << endl;
}
return 0;
}
void find_feature_matches(const Mat &img_1, const Mat &img_2,
std::vector<KeyPoint> &keypoints_1,
std::vector<KeyPoint> &keypoints_2,
std::vector<DMatch> &matches) {
//-- 初始化
Mat descriptors_1, descriptors_2;
// used in OpenCV3
Ptr<FeatureDetector> detector = ORB::create();
Ptr<DescriptorExtractor> descriptor = ORB::create();
// use this if you are in OpenCV2
// Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
// Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
//-- 第一步:检测 Oriented FAST 角点位置
detector->detect(img_1, keypoints_1);
detector->detect(img_2, keypoints_2);
//-- 第二步:根据角点位置计算 BRIEF 描述子
descriptor->compute(img_1, keypoints_1, descriptors_1);
descriptor->compute(img_2, keypoints_2, descriptors_2);
//-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
vector<DMatch> match;
//BFMatcher matcher ( NORM_HAMMING );
matcher->match(descriptors_1, descriptors_2, match);
//-- 第四步:匹配点对筛选
double min_dist = 10000, max_dist = 0;
//找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
for (int i = 0; i < descriptors_1.rows; i++) {
double dist = match[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist);
printf("-- Min dist : %f \n", min_dist);
//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
for (int i = 0; i < descriptors_1.rows; i++) {
if (match[i].distance <= max(2 * min_dist, 30.0)) {
matches.push_back(match[i]);
}
}
}
Point2d pixel2cam(const Point2d &p, const Mat &K) {
return Point2d
(
(p.x - K.at<double>(0, 2)) / K.at<double>(0, 0),
(p.y - K.at<double>(1, 2)) / K.at<double>(1, 1)
);
}
void pose_estimation_2d2d(std::vector<KeyPoint> keypoints_1,
std::vector<KeyPoint> keypoints_2,
std::vector<DMatch> matches,
Mat &R, Mat &t) {
// 相机内参,TUM Freiburg2
Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
//-- 把匹配点转换为vector<Point2f>的形式
vector<Point2f> points1;
vector<Point2f> points2;
for (int i = 0; i < (int) matches.size(); i++) {
points1.push_back(keypoints_1[matches[i].queryIdx].pt);
points2.push_back(keypoints_2[matches[i].trainIdx].pt);
}
//-- 计算基础矩阵
Mat fundamental_matrix;
fundamental_matrix = findFundamentalMat(points1, points2, FM_8POINT); // OpenCV4 修改
cout << "fundamental_matrix is " << endl << fundamental_matrix << endl;
//-- 计算本质矩阵
Point2d principal_point(325.1, 249.7); //相机光心, TUM dataset标定值
double focal_length = 521; //相机焦距, TUM dataset标定值
Mat essential_matrix;
essential_matrix = findEssentialMat(points1, points2, focal_length, principal_point);
cout << "essential_matrix is " << endl << essential_matrix << endl;
//-- 计算单应矩阵
//-- 但是本例中场景不是平面,单应矩阵意义不大
Mat homography_matrix;
homography_matrix = findHomography(points1, points2, RANSAC, 3);
cout << "homography_matrix is " << endl << homography_matrix << endl;
//-- 从本质矩阵中恢复旋转和平移信息.
// 此函数仅在Opencv3中提供
recoverPose(essential_matrix, points1, points2, R, t, focal_length, principal_point);
cout << "R is " << endl << R << endl;
cout << "t is " << endl << t << endl;
}
讨论!!!
7.5 三角测量
在单目 SLAM 中,仅通过 单张图像 无法获得像素的深度信息,需要通过三角测量(Triangulation)(或三角化) 估计地图点的深度
三角测量
: 通过不同位置对同一路标点进行观察,从观察到的位置判断路标点的距离。
- 通过不同季节观察到的星星的角度,估计它与我们的距离。
7.6 实践: 已知相机位姿,通过三角测量求特征点的空间位置 【Code】
bash
cd build
cmake ..
make
./triangulation ../1.png ../2.png
triangulation.cpp
cpp
#include <iostream>
#include <opencv4/opencv2/opencv.hpp>
// #include "extra.h" // used in opencv2
using namespace std;
using namespace cv;
void find_feature_matches(
const Mat &img_1, const Mat &img_2,
std::vector<KeyPoint> &keypoints_1,
std::vector<KeyPoint> &keypoints_2,
std::vector<DMatch> &matches);
void pose_estimation_2d2d(
const std::vector<KeyPoint> &keypoints_1,
const std::vector<KeyPoint> &keypoints_2,
const std::vector<DMatch> &matches,
Mat &R, Mat &t);
void triangulation(
const vector<KeyPoint> &keypoint_1,
const vector<KeyPoint> &keypoint_2,
const std::vector<DMatch> &matches,
const Mat &R, const Mat &t,
vector<Point3d> &points
);
/// 作图用
inline cv::Scalar get_color(float depth) {
float up_th = 50, low_th = 10, th_range = up_th - low_th;
if (depth > up_th) depth = up_th;
if (depth < low_th) depth = low_th;
return cv::Scalar(255 * depth / th_range, 0, 255 * (1 - depth / th_range));
}
// 像素坐标转相机归一化坐标
Point2f pixel2cam(const Point2d &p, const Mat &K);
int main(int argc, char **argv) {
if (argc != 3) {
cout << "usage: triangulation img1 img2" << endl;
return 1;
}
//-- 读取图像
Mat img_1 = imread(argv[1], cv::IMREAD_COLOR); // OpenCV4 要修改 IMREAD_COLOR
Mat img_2 = imread(argv[2], cv::IMREAD_COLOR);
vector<KeyPoint> keypoints_1, keypoints_2;
vector<DMatch> matches;
find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches);
cout << "一共找到了" << matches.size() << "组匹配点" << endl;
//-- 估计两张图像间运动
Mat R, t;
pose_estimation_2d2d(keypoints_1, keypoints_2, matches, R, t);
//-- 三角化
vector<Point3d> points;
triangulation(keypoints_1, keypoints_2, matches, R, t, points);
//-- 验证三角化点与特征点的重投影关系
Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
Mat img1_plot = img_1.clone();
Mat img2_plot = img_2.clone();
for (int i = 0; i < matches.size(); i++) {
// 第一个图
float depth1 = points[i].z;
cout << "depth: " << depth1 << endl;
Point2d pt1_cam = pixel2cam(keypoints_1[matches[i].queryIdx].pt, K);
cv::circle(img1_plot, keypoints_1[matches[i].queryIdx].pt, 2, get_color(depth1), 2);
// 第二个图
Mat pt2_trans = R * (Mat_<double>(3, 1) << points[i].x, points[i].y, points[i].z) + t;
float depth2 = pt2_trans.at<double>(2, 0);
cv::circle(img2_plot, keypoints_2[matches[i].trainIdx].pt, 2, get_color(depth2), 2);
}
cv::imshow("img 1", img1_plot);
cv::imshow("img 2", img2_plot);
cv::waitKey();
return 0;
}
void find_feature_matches(const Mat &img_1, const Mat &img_2,
std::vector<KeyPoint> &keypoints_1,
std::vector<KeyPoint> &keypoints_2,
std::vector<DMatch> &matches) {
//-- 初始化
Mat descriptors_1, descriptors_2;
// used in OpenCV3
Ptr<FeatureDetector> detector = ORB::create();
Ptr<DescriptorExtractor> descriptor = ORB::create();
// use this if you are in OpenCV2
// Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
// Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
//-- 第一步:检测 Oriented FAST 角点位置
detector->detect(img_1, keypoints_1);
detector->detect(img_2, keypoints_2);
//-- 第二步:根据角点位置计算 BRIEF 描述子
descriptor->compute(img_1, keypoints_1, descriptors_1);
descriptor->compute(img_2, keypoints_2, descriptors_2);
//-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
vector<DMatch> match;
// BFMatcher matcher ( NORM_HAMMING );
matcher->match(descriptors_1, descriptors_2, match);
//-- 第四步:匹配点对筛选
double min_dist = 10000, max_dist = 0;
//找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
for (int i = 0; i < descriptors_1.rows; i++) {
double dist = match[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist);
printf("-- Min dist : %f \n", min_dist);
//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
for (int i = 0; i < descriptors_1.rows; i++) {
if (match[i].distance <= max(2 * min_dist, 30.0)) {
matches.push_back(match[i]);
}
}
}
void pose_estimation_2d2d(
const std::vector<KeyPoint> &keypoints_1,
const std::vector<KeyPoint> &keypoints_2,
const std::vector<DMatch> &matches,
Mat &R, Mat &t) {
// 相机内参,TUM Freiburg2
Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
//-- 把匹配点转换为vector<Point2f>的形式
vector<Point2f> points1;
vector<Point2f> points2;
for (int i = 0; i < (int) matches.size(); i++) {
points1.push_back(keypoints_1[matches[i].queryIdx].pt);
points2.push_back(keypoints_2[matches[i].trainIdx].pt);
}
//-- 计算本质矩阵
Point2d principal_point(325.1, 249.7); //相机主点, TUM dataset标定值
int focal_length = 521; //相机焦距, TUM dataset标定值
Mat essential_matrix;
essential_matrix = findEssentialMat(points1, points2, focal_length, principal_point);
//-- 从本质矩阵中恢复旋转和平移信息.
recoverPose(essential_matrix, points1, points2, R, t, focal_length, principal_point);
}
void triangulation(
const vector<KeyPoint> &keypoint_1,
const vector<KeyPoint> &keypoint_2,
const std::vector<DMatch> &matches,
const Mat &R, const Mat &t,
vector<Point3d> &points) {
Mat T1 = (Mat_<float>(3, 4) <<
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0);
Mat T2 = (Mat_<float>(3, 4) <<
R.at<double>(0, 0), R.at<double>(0, 1), R.at<double>(0, 2), t.at<double>(0, 0),
R.at<double>(1, 0), R.at<double>(1, 1), R.at<double>(1, 2), t.at<double>(1, 0),
R.at<double>(2, 0), R.at<double>(2, 1), R.at<double>(2, 2), t.at<double>(2, 0)
);
Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
vector<Point2f> pts_1, pts_2;
for (DMatch m:matches) {
// 将像素坐标转换至相机坐标
pts_1.push_back(pixel2cam(keypoint_1[m.queryIdx].pt, K));
pts_2.push_back(pixel2cam(keypoint_2[m.trainIdx].pt, K));
}
Mat pts_4d;
cv::triangulatePoints(T1, T2, pts_1, pts_2, pts_4d);
// 转换成非齐次坐标
for (int i = 0; i < pts_4d.cols; i++) {
Mat x = pts_4d.col(i);
x /= x.at<float>(3, 0); // 归一化
Point3d p(
x.at<float>(0, 0),
x.at<float>(1, 0),
x.at<float>(2, 0)
);
points.push_back(p);
}
}
Point2f pixel2cam(const Point2d &p, const Mat &K) {
return Point2f
(
(p.x - K.at<double>(0, 2)) / K.at<double>(0, 0),
(p.y - K.at<double>(1, 2)) / K.at<double>(1, 1)
);
}
7.6.2 三角测量的矛盾 : 增加平移 Yes or No
1、平移很小时, 像素上的不确定性 将导致 较大的深度不确定性。
- 特征点 运动一个 像素 Δ x \Delta x Δx ⟶ \longrightarrow ⟶ 视线角 变换一个角度 Δ θ \Delta \theta Δθ ⟶ \longrightarrow ⟶ 将测量到 深度值变化 Δ d \Delta d Δd
- 当 t \bm{t} t 较大时, Δ d \Delta d Δd 将明显变小。说明平移较大时,在同样的相机分辨率下,三角化测量将会更精确。
提高三角化精度的 2 种方法:
1、提高特征点的提取精度,也就是提高图像分辨率 ⟶ \longrightarrow ⟶ 图像变大,增加计算成本
2、增大平移量 ⟶ \longrightarrow ⟶ 图像外观发生明显变化,使得特征提取与匹配变得困难
三角化的矛盾 【视差(parallax)】: 增大平移,可能导致匹配失效;而平移太小,则三角化精度不够。
2D-2D 的 对极几何法 的 不足
1、需要8个或8个以上的点对
2、存在初始化、纯旋转和尺度的问题
7.7 3D-2D: PnP (Perspective-n-Point) 【最重要】
当知道 n 个 3D 空间点及其投影位置时,如何估计相机的位姿。
如果两张图像中的一张特征点的 3D 位置已知,最少需要 3 个点对(以及至少一个额外点验证结果) 即可估计相机运动。
特征点的3D位置获取方法: 三角化 或 RGB-D相机的深度图
双目/RGB-D 单目 视觉里程计 PnP估计相机运动 需先初始化
3D-2D 方法的优点:
不需要使用对极约束,又可以在很少的匹配点获得较好的运动估计。
7.7.1 直接线性变换(DLT)
适用场景:
1、已知一组3D点的位置,以及它们在某个相机中的投影位置,求该相机的位姿。
2、给定地图和图像,求解相机状态。
3、把 3D 点看成在另一个相机坐标系中的点, 用来求解两个相机的相对运动。
7.7.2 P3P 【3对点 估计位姿】
P3P 不足:
1、只用了 3个点的信息,浪费了其它信息
2、如果3D 点 或 2D 点 受噪声影响,或存在 误匹配 ,则算法失效。
------> EPnP、UPnP
- 利用更多的信息,用迭代的方式对相机位姿进行优化,尽可能消除噪声的影响。
SLAM中的通常做法: 先使用 P3P/EPnP 等方法估计相机位姿,再构建最小二乘优化问题对估计值进行调整。
7.7.3 最小化 重投影误差 求解PnP
线性方法: 先求相机位姿,再求空间点位置
非线性优化: 把相机和三维点放在一起优化 【Bundle Adjustment】
3D 点的投影位置 与 观测位置 作差 【重投影误差】
优化特征点的空间位置:
7.8 实践: 求解 PnP 【Code】
7.8.1 使用 PnP 求解位姿
要修改的报错:
报错1:
bash
/home/xixi/Downloads/slambook2-master/ch7/pose_estimation_3d2d.cpp:37:11: error: 'Sophus::SE3d' has not been declared
37 | Sophus::SE3d &pose
| ^~~~
/home/xixi/Downloads/slambook2-master/ch7/pose_estimation_3d2d.cpp:45:11: error: 'Sophus::SE3d' has not been declared
45 | Sophus::SE3d &pose
代码里所有的 SE3d
去掉d
报错2:
bash
/home/xixi/Downloads/slambook2-master/ch7/pose_estimation_3d2d.cpp:54:31: error: 'CV_LOAD_IMAGE_COLOR' was not declared in this scope
54 | Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR);
| ^~~~~~~~~~~~~~~~~~~
/home/xixi/Downloads/slambook2-master/ch7/pose_estimation_3d2d.cpp:64:28: error: 'CV_LOAD_IMAGE_UNCHANGED' was not declared in this scope
64 | Mat d1 = imread(argv[3], CV_LOAD_IMAGE_UNCHANGED); // 深度图为16位无符号数,单通道图像
bash
opencv3 opencv4
CV_LOAD_IMAGE_UNCHANGED IMREAD_UNCHANGED
CV_LOAD_IMAGE_GRAYSCALE IMREAD_GRAYSCALE
CV_LOAD_IMAGE_COLOR IMREAD_COLOR
CV_LOAD_IMAGE_ANYDEPTH IMREAD_ANYDEPTH
报错3:
bash
/usr/local/include/g2o/stuff/tuple_tools.h:41:46: error: 'tuple_size_v' is not a member of 'std'; did you mean 'tuple_size'?
41 | f, t, i, std::make_index_sequence<std::tuple_size_v<std::decay_t<T>>>());
解决办法:
在 CMakeLists.txt
中添加 set(CMAKE_CXX_STANDARD 17)
报错4:
bash
/home/xixi/Downloads/slambook2-master/ch7/pose_estimation_3d2d.cpp:318:10: error: 'make_unique' is not a member of 'g2o'; did you mean 'std::make_unique'?
318 | g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
类似第6讲,直接替换 代码块
cpp
// 构建图优化,先设定g2o typedef 别名替换
/*typedef g2o::BlockSolver<g2o::BlockSolverTraits<3, 1>> BlockSolverType; // 每个误差项优化变量维度为3,误差值维度为1
typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType> LinearSolverType; // 线性求解器类型
*/
std::unique_ptr<g2o::BlockSolverX::LinearSolverType> linearSolver
(new g2o::LinearSolverDense<g2o::BlockSolverX::PoseMatrixType>());
// 梯度下降方法,可以从GN, LM, DogLeg 中选
/*auto solver = new g2o::OptimizationAlgorithmGaussNewton(
g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));*/
std::unique_ptr<g2o::BlockSolverX> solver_ptr (new g2o::BlockSolverX(std::move(linearSolver)));
g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton(std::move(solver_ptr));
g2o::SparseOptimizer optimizer; // 图模型
optimizer.setAlgorithm(solver); // 设置求解器
optimizer.setVerbose(true); // 打开调试输出
报错5:
bash
/usr/bin/ld: CMakeFiles/pose_estimation_3d2d.dir/pose_estimation_3d2d.cpp.o: in function `bundleAdjustmentGaussNewton(std::vector<Eigen::Matrix<double, 3, 1, 0, 3, 1>, Eigen::aligned_allocator<Eigen::Matrix<double, 3, 1, 0, 3, 1> > > const&, std::vector<Eigen::Matrix<double, 2, 1, 0, 2, 1>, Eigen::aligned_allocator<Eigen::Matrix<double, 2, 1, 0, 2, 1> > > const&, cv::Mat const&, Sophus::SE3&)':
pose_estimation_3d2d.cpp:(.text+0x2a4f): undefined reference to `Sophus::SE3::operator*(Eigen::Matrix<double, 3, 1, 0, 3, 1> const&) const'
/usr/bin/ld: pose_estimation_3d2d.cpp:(.text+0x3254): undefined reference to `Sophus::SE3::exp(Eigen::Matrix<double, 6, 1, 0, 6, 1> const&)'
是CMakeLists.txt 里没链接到 Sophus,加上即可
bash
add_executable(pose_estimation_3d2d pose_estimation_3d2d.cpp)
target_link_libraries(pose_estimation_3d2d
g2o_core g2o_stuff
${OpenCV_LIBS}
${Sophus_LIBRARIES})
bash
cd build
cmake ..
make
./pose_estimation_3d2d ../1.png ../2.png ../1_depth.png ../2_depth.png
pose_estimation_3d2d.cpp
cpp
#include <iostream>
#include <opencv4/opencv2/core/core.hpp>
#include <opencv4/opencv2/features2d/features2d.hpp>
#include <opencv4/opencv2/highgui/highgui.hpp>
#include <opencv4/opencv2/calib3d/calib3d.hpp>
#include <Eigen/Core>
#include <g2o/core/base_vertex.h>
#include <g2o/core/base_unary_edge.h>
#include <g2o/core/sparse_optimizer.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/solver.h>
#include <g2o/core/optimization_algorithm_gauss_newton.h>
#include <g2o/solvers/dense/linear_solver_dense.h>
#include <sophus/se3.h>
#include <chrono>
using namespace std;
using namespace cv;
void find_feature_matches(
const Mat &img_1, const Mat &img_2,
std::vector<KeyPoint> &keypoints_1,
std::vector<KeyPoint> &keypoints_2,
std::vector<DMatch> &matches);
// 像素坐标转相机归一化坐标
Point2d pixel2cam(const Point2d &p, const Mat &K);
// BA by g2o
typedef vector<Eigen::Vector2d, Eigen::aligned_allocator<Eigen::Vector2d>> VecVector2d;
typedef vector<Eigen::Vector3d, Eigen::aligned_allocator<Eigen::Vector3d>> VecVector3d;
void bundleAdjustmentG2O(
const VecVector3d &points_3d,
const VecVector2d &points_2d,
const Mat &K,
Sophus::SE3 &pose
);
// BA by gauss-newton
void bundleAdjustmentGaussNewton(
const VecVector3d &points_3d,
const VecVector2d &points_2d,
const Mat &K,
Sophus::SE3 &pose
);
int main(int argc, char **argv) {
if (argc != 5) {
cout << "usage: pose_estimation_3d2d img1 img2 depth1 depth2" << endl;
return 1;
}
//-- 读取图像
Mat img_1 = imread(argv[1], IMREAD_COLOR);
Mat img_2 = imread(argv[2], IMREAD_COLOR);
assert(img_1.data && img_2.data && "Can not load images!");
vector<KeyPoint> keypoints_1, keypoints_2;
vector<DMatch> matches;
find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches);
cout << "一共找到了" << matches.size() << "组匹配点" << endl;
// 建立3D点
Mat d1 = imread(argv[3], IMREAD_UNCHANGED); // 深度图为16位无符号数,单通道图像
Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
vector<Point3f> pts_3d;
vector<Point2f> pts_2d;
for (DMatch m:matches) {
ushort d = d1.ptr<unsigned short>(int(keypoints_1[m.queryIdx].pt.y))[int(keypoints_1[m.queryIdx].pt.x)];
if (d == 0) // bad depth
continue;
float dd = d / 5000.0;
Point2d p1 = pixel2cam(keypoints_1[m.queryIdx].pt, K);
pts_3d.push_back(Point3f(p1.x * dd, p1.y * dd, dd));
pts_2d.push_back(keypoints_2[m.trainIdx].pt);
}
cout << "3d-2d pairs: " << pts_3d.size() << endl;
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
Mat r, t;
solvePnP(pts_3d, pts_2d, K, Mat(), r, t, false); // 调用OpenCV 的 PnP 求解,可选择EPNP,DLS等方法
Mat R;
cv::Rodrigues(r, R); // r为旋转向量形式,用Rodrigues公式转换为矩阵
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "solve pnp in opencv cost time: " << time_used.count() << " seconds." << endl;
cout << "R=" << endl << R << endl;
cout << "t=" << endl << t << endl;
VecVector3d pts_3d_eigen;
VecVector2d pts_2d_eigen;
for (size_t i = 0; i < pts_3d.size(); ++i) {
pts_3d_eigen.push_back(Eigen::Vector3d(pts_3d[i].x, pts_3d[i].y, pts_3d[i].z));
pts_2d_eigen.push_back(Eigen::Vector2d(pts_2d[i].x, pts_2d[i].y));
}
cout << "calling bundle adjustment by gauss newton" << endl;
Sophus::SE3 pose_gn;
t1 = chrono::steady_clock::now();
bundleAdjustmentGaussNewton(pts_3d_eigen, pts_2d_eigen, K, pose_gn);
t2 = chrono::steady_clock::now();
time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "solve pnp by gauss newton cost time: " << time_used.count() << " seconds." << endl;
cout << "calling bundle adjustment by g2o" << endl;
Sophus::SE3 pose_g2o;
t1 = chrono::steady_clock::now();
bundleAdjustmentG2O(pts_3d_eigen, pts_2d_eigen, K, pose_g2o);
t2 = chrono::steady_clock::now();
time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "solve pnp by g2o cost time: " << time_used.count() << " seconds." << endl;
return 0;
}
void find_feature_matches(const Mat &img_1, const Mat &img_2,
std::vector<KeyPoint> &keypoints_1,
std::vector<KeyPoint> &keypoints_2,
std::vector<DMatch> &matches) {
//-- 初始化
Mat descriptors_1, descriptors_2;
// used in OpenCV3
Ptr<FeatureDetector> detector = ORB::create();
Ptr<DescriptorExtractor> descriptor = ORB::create();
// use this if you are in OpenCV2
// Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
// Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
//-- 第一步:检测 Oriented FAST 角点位置
detector->detect(img_1, keypoints_1);
detector->detect(img_2, keypoints_2);
//-- 第二步:根据角点位置计算 BRIEF 描述子
descriptor->compute(img_1, keypoints_1, descriptors_1);
descriptor->compute(img_2, keypoints_2, descriptors_2);
//-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
vector<DMatch> match;
// BFMatcher matcher ( NORM_HAMMING );
matcher->match(descriptors_1, descriptors_2, match);
//-- 第四步:匹配点对筛选
double min_dist = 10000, max_dist = 0;
//找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
for (int i = 0; i < descriptors_1.rows; i++) {
double dist = match[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist);
printf("-- Min dist : %f \n", min_dist);
//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
for (int i = 0; i < descriptors_1.rows; i++) {
if (match[i].distance <= max(2 * min_dist, 30.0)) {
matches.push_back(match[i]);
}
}
}
Point2d pixel2cam(const Point2d &p, const Mat &K) {
return Point2d
(
(p.x - K.at<double>(0, 2)) / K.at<double>(0, 0),
(p.y - K.at<double>(1, 2)) / K.at<double>(1, 1)
);
}
void bundleAdjustmentGaussNewton(
const VecVector3d &points_3d,
const VecVector2d &points_2d,
const Mat &K,
Sophus::SE3 &pose) {
typedef Eigen::Matrix<double, 6, 1> Vector6d;
const int iterations = 10;
double cost = 0, lastCost = 0;
double fx = K.at<double>(0, 0);
double fy = K.at<double>(1, 1);
double cx = K.at<double>(0, 2);
double cy = K.at<double>(1, 2);
for (int iter = 0; iter < iterations; iter++) {
Eigen::Matrix<double, 6, 6> H = Eigen::Matrix<double, 6, 6>::Zero();
Vector6d b = Vector6d::Zero();
cost = 0;
// compute cost
for (int i = 0; i < points_3d.size(); i++) {
Eigen::Vector3d pc = pose * points_3d[i];
double inv_z = 1.0 / pc[2];
double inv_z2 = inv_z * inv_z;
Eigen::Vector2d proj(fx * pc[0] / pc[2] + cx, fy * pc[1] / pc[2] + cy);
Eigen::Vector2d e = points_2d[i] - proj;
cost += e.squaredNorm();
Eigen::Matrix<double, 2, 6> J;
J << -fx * inv_z,
0,
fx * pc[0] * inv_z2,
fx * pc[0] * pc[1] * inv_z2,
-fx - fx * pc[0] * pc[0] * inv_z2,
fx * pc[1] * inv_z,
0,
-fy * inv_z,
fy * pc[1] * inv_z2,
fy + fy * pc[1] * pc[1] * inv_z2,
-fy * pc[0] * pc[1] * inv_z2,
-fy * pc[0] * inv_z;
H += J.transpose() * J;
b += -J.transpose() * e;
}
Vector6d dx;
dx = H.ldlt().solve(b);
if (isnan(dx[0])) {
cout << "result is nan!" << endl;
break;
}
if (iter > 0 && cost >= lastCost) {
// cost increase, update is not good
cout << "cost: " << cost << ", last cost: " << lastCost << endl;
break;
}
// update your estimation
pose = Sophus::SE3::exp(dx) * pose;
lastCost = cost;
cout << "iteration " << iter << " cost=" << std::setprecision(12) << cost << endl;
if (dx.norm() < 1e-6) {
// converge
break;
}
}
cout << "pose by g-n: \n" << pose.matrix() << endl;
}
/// vertex and edges used in g2o ba
class VertexPose : public g2o::BaseVertex<6, Sophus::SE3> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
virtual void setToOriginImpl() override {
_estimate = Sophus::SE3();
}
/// left multiplication on SE3
virtual void oplusImpl(const double *update) override {
Eigen::Matrix<double, 6, 1> update_eigen;
update_eigen << update[0], update[1], update[2], update[3], update[4], update[5];
_estimate = Sophus::SE3::exp(update_eigen) * _estimate;
}
virtual bool read(istream &in) override {}
virtual bool write(ostream &out) const override {}
};
class EdgeProjection : public g2o::BaseUnaryEdge<2, Eigen::Vector2d, VertexPose> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
EdgeProjection(const Eigen::Vector3d &pos, const Eigen::Matrix3d &K) : _pos3d(pos), _K(K) {}
virtual void computeError() override {
const VertexPose *v = static_cast<VertexPose *> (_vertices[0]);
Sophus::SE3 T = v->estimate();
Eigen::Vector3d pos_pixel = _K * (T * _pos3d);
pos_pixel /= pos_pixel[2];
_error = _measurement - pos_pixel.head<2>();
}
virtual void linearizeOplus() override {
const VertexPose *v = static_cast<VertexPose *> (_vertices[0]);
Sophus::SE3 T = v->estimate();
Eigen::Vector3d pos_cam = T * _pos3d;
double fx = _K(0, 0);
double fy = _K(1, 1);
double cx = _K(0, 2);
double cy = _K(1, 2);
double X = pos_cam[0];
double Y = pos_cam[1];
double Z = pos_cam[2];
double Z2 = Z * Z;
_jacobianOplusXi
<< -fx / Z, 0, fx * X / Z2, fx * X * Y / Z2, -fx - fx * X * X / Z2, fx * Y / Z,
0, -fy / Z, fy * Y / (Z * Z), fy + fy * Y * Y / Z2, -fy * X * Y / Z2, -fy * X / Z;
}
virtual bool read(istream &in) override {}
virtual bool write(ostream &out) const override {}
private:
Eigen::Vector3d _pos3d;
Eigen::Matrix3d _K;
};
void bundleAdjustmentG2O(
const VecVector3d &points_3d,
const VecVector2d &points_2d,
const Mat &K,
Sophus::SE3 &pose) {
// 构建图优化,先设定g2o typedef 别名替换
/*typedef g2o::BlockSolver<g2o::BlockSolverTraits<3, 1>> BlockSolverType; // 每个误差项优化变量维度为3,误差值维度为1
typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType> LinearSolverType; // 线性求解器类型
*/
std::unique_ptr<g2o::BlockSolverX::LinearSolverType> linearSolver
(new g2o::LinearSolverDense<g2o::BlockSolverX::PoseMatrixType>());
// 梯度下降方法,可以从GN, LM, DogLeg 中选
/*auto solver = new g2o::OptimizationAlgorithmGaussNewton(
g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));*/
std::unique_ptr<g2o::BlockSolverX> solver_ptr (new g2o::BlockSolverX(std::move(linearSolver)));
g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton(std::move(solver_ptr));
g2o::SparseOptimizer optimizer; // 图模型
optimizer.setAlgorithm(solver); // 设置求解器
optimizer.setVerbose(true); // 打开调试输出
// vertex
VertexPose *vertex_pose = new VertexPose(); // camera vertex_pose
vertex_pose->setId(0);
vertex_pose->setEstimate(Sophus::SE3());
optimizer.addVertex(vertex_pose);
// K
Eigen::Matrix3d K_eigen;
K_eigen <<
K.at<double>(0, 0), K.at<double>(0, 1), K.at<double>(0, 2),
K.at<double>(1, 0), K.at<double>(1, 1), K.at<double>(1, 2),
K.at<double>(2, 0), K.at<double>(2, 1), K.at<double>(2, 2);
// edges
int index = 1;
for (size_t i = 0; i < points_2d.size(); ++i) {
auto p2d = points_2d[i];
auto p3d = points_3d[i];
EdgeProjection *edge = new EdgeProjection(p3d, K_eigen);
edge->setId(index);
edge->setVertex(0, vertex_pose);
edge->setMeasurement(p2d);
edge->setInformation(Eigen::Matrix2d::Identity());
optimizer.addEdge(edge);
index++;
}
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
optimizer.setVerbose(true);
optimizer.initializeOptimization();
optimizer.optimize(10);
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "optimization costs time: " << time_used.count() << " seconds." << endl;
cout << "pose estimated by g2o =\n" << vertex_pose->estimate().matrix() << endl;
pose = vertex_pose->estimate();
}
7.8.3 使用 g2o 进行 BA 优化
7.9 3D-3D: ICP(Iterative Closest Point, ICP,迭代最近点) 已知两个图的深度
迭代最近点
: 认为距离最近的两个点为同一个。
7.9.1 SVD 方法
7.9.2 非线性优化方法
7.10 使用 SVD 及 非线性优化 来求解 ICP 【Code】
7.10.1 SVD方法
通过特征匹配 获取两组 3D 点,最后用 ICP 计算 位姿变换
7.10.2 非线性优化方法
根据 7.8 节改一遍
新的报错:
bash
/home/xixi/Downloads/slambook2-master/ch7/pose_estimation_3d3d.cpp:81:50: error: 'Sophus::SO3d' has not been declared
81 | _jacobianOplusXi.block<3, 3>(0, 3) = Sophus::SO3d::hat(xyz_trans);
去掉d,改成 SO3
bash
/home/xixi/Downloads/slambook2-master/ch7/pose_estimation_3d3d.cpp: In function 'void bundleAdjustment(const std::vector<cv::Point3_<float> >&, const std::vector<cv::Point3_<float> >&, cv::Mat&, cv::Mat&)':
/home/xixi/Downloads/slambook2-master/ch7/pose_estimation_3d3d.cpp:298:41: error: 'const EstimateType' {aka 'const class Sophus::SE3'} has no member named 'rotationMatrix'; did you mean 'rotation_matrix'?
298 | Eigen::Matrix3d R_ = pose->estimate().rotationMatrix();
| ^~~~~~~~~~~~~~
| rotation_matrix
按照提示改成
bash
Eigen::Matrix3d R_ = pose->estimate().rotation_matrix();
bash
cd build
cmake ..
make
./pose_estimation_3d3d ../1.png ../2.png ../1_depth.png ../2_depth.png
pose_estimation_3d3d.cpp
cpp
#include <iostream>
#include <opencv4/opencv2/core/core.hpp>
#include <opencv4/opencv2/features2d/features2d.hpp>
#include <opencv4/opencv2/highgui/highgui.hpp>
#include <opencv4/opencv2/calib3d/calib3d.hpp>
#include <Eigen/Core>
#include <Eigen/Dense>
#include <Eigen/Geometry>
#include <Eigen/SVD>
#include <g2o/core/base_vertex.h>
#include <g2o/core/base_unary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_gauss_newton.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/solvers/dense/linear_solver_dense.h>
#include <chrono>
#include <sophus/se3.h>
using namespace std;
using namespace cv;
void find_feature_matches(
const Mat &img_1, const Mat &img_2,
std::vector<KeyPoint> &keypoints_1,
std::vector<KeyPoint> &keypoints_2,
std::vector<DMatch> &matches);
// 像素坐标转相机归一化坐标
Point2d pixel2cam(const Point2d &p, const Mat &K);
void pose_estimation_3d3d(
const vector<Point3f> &pts1,
const vector<Point3f> &pts2,
Mat &R, Mat &t
);
void bundleAdjustment(
const vector<Point3f> &points_3d,
const vector<Point3f> &points_2d,
Mat &R, Mat &t
);
/// vertex and edges used in g2o ba
class VertexPose : public g2o::BaseVertex<6, Sophus::SE3> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
virtual void setToOriginImpl() override {
_estimate = Sophus::SE3();
}
/// left multiplication on SE3
virtual void oplusImpl(const double *update) override {
Eigen::Matrix<double, 6, 1> update_eigen;
update_eigen << update[0], update[1], update[2], update[3], update[4], update[5];
_estimate = Sophus::SE3::exp(update_eigen) * _estimate;
}
virtual bool read(istream &in) override {}
virtual bool write(ostream &out) const override {}
};
/// g2o edge
class EdgeProjectXYZRGBDPoseOnly : public g2o::BaseUnaryEdge<3, Eigen::Vector3d, VertexPose> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
EdgeProjectXYZRGBDPoseOnly(const Eigen::Vector3d &point) : _point(point) {}
virtual void computeError() override {
const VertexPose *pose = static_cast<const VertexPose *> ( _vertices[0] );
_error = _measurement - pose->estimate() * _point;
}
virtual void linearizeOplus() override {
VertexPose *pose = static_cast<VertexPose *>(_vertices[0]);
Sophus::SE3 T = pose->estimate();
Eigen::Vector3d xyz_trans = T * _point;
_jacobianOplusXi.block<3, 3>(0, 0) = -Eigen::Matrix3d::Identity();
_jacobianOplusXi.block<3, 3>(0, 3) = Sophus::SO3::hat(xyz_trans);
}
bool read(istream &in) {}
bool write(ostream &out) const {}
protected:
Eigen::Vector3d _point;
};
int main(int argc, char **argv) {
if (argc != 5) {
cout << "usage: pose_estimation_3d3d img1 img2 depth1 depth2" << endl;
return 1;
}
//-- 读取图像
Mat img_1 = imread(argv[1], IMREAD_COLOR);
Mat img_2 = imread(argv[2], IMREAD_COLOR);
vector<KeyPoint> keypoints_1, keypoints_2;
vector<DMatch> matches;
find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches);
cout << "一共找到了" << matches.size() << "组匹配点" << endl;
// 建立3D点
Mat depth1 = imread(argv[3], IMREAD_UNCHANGED); // 深度图为16位无符号数,单通道图像
Mat depth2 = imread(argv[4], IMREAD_UNCHANGED); // 深度图为16位无符号数,单通道图像
Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
vector<Point3f> pts1, pts2;
for (DMatch m:matches) {
ushort d1 = depth1.ptr<unsigned short>(int(keypoints_1[m.queryIdx].pt.y))[int(keypoints_1[m.queryIdx].pt.x)];
ushort d2 = depth2.ptr<unsigned short>(int(keypoints_2[m.trainIdx].pt.y))[int(keypoints_2[m.trainIdx].pt.x)];
if (d1 == 0 || d2 == 0) // bad depth
continue;
Point2d p1 = pixel2cam(keypoints_1[m.queryIdx].pt, K);
Point2d p2 = pixel2cam(keypoints_2[m.trainIdx].pt, K);
float dd1 = float(d1) / 5000.0;
float dd2 = float(d2) / 5000.0;
pts1.push_back(Point3f(p1.x * dd1, p1.y * dd1, dd1));
pts2.push_back(Point3f(p2.x * dd2, p2.y * dd2, dd2));
}
cout << "3d-3d pairs: " << pts1.size() << endl;
Mat R, t;
pose_estimation_3d3d(pts1, pts2, R, t);
cout << "ICP via SVD results: " << endl;
cout << "R = " << R << endl;
cout << "t = " << t << endl;
cout << "R_inv = " << R.t() << endl;
cout << "t_inv = " << -R.t() * t << endl;
cout << "calling bundle adjustment" << endl;
bundleAdjustment(pts1, pts2, R, t);
// verify p1 = R * p2 + t
for (int i = 0; i < 5; i++) {
cout << "p1 = " << pts1[i] << endl;
cout << "p2 = " << pts2[i] << endl;
cout << "(R*p2+t) = " <<
R * (Mat_<double>(3, 1) << pts2[i].x, pts2[i].y, pts2[i].z) + t
<< endl;
cout << endl;
}
}
void find_feature_matches(const Mat &img_1, const Mat &img_2,
std::vector<KeyPoint> &keypoints_1,
std::vector<KeyPoint> &keypoints_2,
std::vector<DMatch> &matches) {
//-- 初始化
Mat descriptors_1, descriptors_2;
// used in OpenCV3
Ptr<FeatureDetector> detector = ORB::create();
Ptr<DescriptorExtractor> descriptor = ORB::create();
// use this if you are in OpenCV2
// Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
// Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
//-- 第一步:检测 Oriented FAST 角点位置
detector->detect(img_1, keypoints_1);
detector->detect(img_2, keypoints_2);
//-- 第二步:根据角点位置计算 BRIEF 描述子
descriptor->compute(img_1, keypoints_1, descriptors_1);
descriptor->compute(img_2, keypoints_2, descriptors_2);
//-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
vector<DMatch> match;
// BFMatcher matcher ( NORM_HAMMING );
matcher->match(descriptors_1, descriptors_2, match);
//-- 第四步:匹配点对筛选
double min_dist = 10000, max_dist = 0;
//找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
for (int i = 0; i < descriptors_1.rows; i++) {
double dist = match[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist);
printf("-- Min dist : %f \n", min_dist);
//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
for (int i = 0; i < descriptors_1.rows; i++) {
if (match[i].distance <= max(2 * min_dist, 30.0)) {
matches.push_back(match[i]);
}
}
}
Point2d pixel2cam(const Point2d &p, const Mat &K) {
return Point2d(
(p.x - K.at<double>(0, 2)) / K.at<double>(0, 0),
(p.y - K.at<double>(1, 2)) / K.at<double>(1, 1)
);
}
void pose_estimation_3d3d(const vector<Point3f> &pts1,
const vector<Point3f> &pts2,
Mat &R, Mat &t) {
Point3f p1, p2; // center of mass
int N = pts1.size();
for (int i = 0; i < N; i++) {
p1 += pts1[i];
p2 += pts2[i];
}
p1 = Point3f(Vec3f(p1) / N);
p2 = Point3f(Vec3f(p2) / N);
vector<Point3f> q1(N), q2(N); // remove the center
for (int i = 0; i < N; i++) {
q1[i] = pts1[i] - p1;
q2[i] = pts2[i] - p2;
}
// compute q1*q2^T
Eigen::Matrix3d W = Eigen::Matrix3d::Zero();
for (int i = 0; i < N; i++) {
W += Eigen::Vector3d(q1[i].x, q1[i].y, q1[i].z) * Eigen::Vector3d(q2[i].x, q2[i].y, q2[i].z).transpose();
}
cout << "W=" << W << endl;
// SVD on W
Eigen::JacobiSVD<Eigen::Matrix3d> svd(W, Eigen::ComputeFullU | Eigen::ComputeFullV);
Eigen::Matrix3d U = svd.matrixU();
Eigen::Matrix3d V = svd.matrixV();
cout << "U=" << U << endl;
cout << "V=" << V << endl;
Eigen::Matrix3d R_ = U * (V.transpose());
if (R_.determinant() < 0) {
R_ = -R_;
}
Eigen::Vector3d t_ = Eigen::Vector3d(p1.x, p1.y, p1.z) - R_ * Eigen::Vector3d(p2.x, p2.y, p2.z);
// convert to cv::Mat
R = (Mat_<double>(3, 3) <<
R_(0, 0), R_(0, 1), R_(0, 2),
R_(1, 0), R_(1, 1), R_(1, 2),
R_(2, 0), R_(2, 1), R_(2, 2)
);
t = (Mat_<double>(3, 1) << t_(0, 0), t_(1, 0), t_(2, 0));
}
void bundleAdjustment(
const vector<Point3f> &pts1,
const vector<Point3f> &pts2,
Mat &R, Mat &t) {
// 构建图优化,先设定g2o typedef 别名替换
/*typedef g2o::BlockSolver<g2o::BlockSolverTraits<3, 1>> BlockSolverType; // 每个误差项优化变量维度为3,误差值维度为1
typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType> LinearSolverType; // 线性求解器类型
*/
std::unique_ptr<g2o::BlockSolverX::LinearSolverType> linearSolver
(new g2o::LinearSolverDense<g2o::BlockSolverX::PoseMatrixType>());
// 梯度下降方法,可以从GN, LM, DogLeg 中选
/*auto solver = new g2o::OptimizationAlgorithmGaussNewton(
g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));*/
std::unique_ptr<g2o::BlockSolverX> solver_ptr (new g2o::BlockSolverX(std::move(linearSolver)));
g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton(std::move(solver_ptr));
g2o::SparseOptimizer optimizer; // 图模型
optimizer.setAlgorithm(solver); // 设置求解器
optimizer.setVerbose(true); // 打开调试输出
// vertex
VertexPose *pose = new VertexPose(); // camera pose
pose->setId(0);
pose->setEstimate(Sophus::SE3());
optimizer.addVertex(pose);
// edges
for (size_t i = 0; i < pts1.size(); i++) {
EdgeProjectXYZRGBDPoseOnly *edge = new EdgeProjectXYZRGBDPoseOnly(
Eigen::Vector3d(pts2[i].x, pts2[i].y, pts2[i].z));
edge->setVertex(0, pose);
edge->setMeasurement(Eigen::Vector3d(
pts1[i].x, pts1[i].y, pts1[i].z));
edge->setInformation(Eigen::Matrix3d::Identity());
optimizer.addEdge(edge);
}
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
optimizer.initializeOptimization();
optimizer.optimize(10);
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "optimization costs time: " << time_used.count() << " seconds." << endl;
cout << endl << "after optimization:" << endl;
cout << "T=\n" << pose->estimate().matrix() << endl;
// convert to cv::Mat
Eigen::Matrix3d R_ = pose->estimate().rotation_matrix();
Eigen::Vector3d t_ = pose->estimate().translation();
R = (Mat_<double>(3, 3) <<
R_(0, 0), R_(0, 1), R_(0, 2),
R_(1, 0), R_(1, 1), R_(1, 2),
R_(2, 0), R_(2, 1), R_(2, 2)
);
t = (Mat_<double>(3, 1) << t_(0, 0), t_(1, 0), t_(2, 0));
}
使用了越来越多的信息:
对极几何 | PnP | ICP |
---|---|---|
没有深度 | 一个图的深度 | 两个图的深度 |
7.11 小结
其它
查看opencv 版本命令
bash
sudo apt update
sudo apt install libopencv-dev python3-opencv
bash
python3 -c "import cv2; print(cv2.__version__)"