kaggle新赛:写作质量预测大赛【数据挖掘】

**赛题名称:**Linking Writing Processes to Writing Quality

**赛题链接:**https://www.kaggle.com/competitions/linking-writing-processes-to-writing-quality

赛题背景

写作过程中存在复杂的行为动作和认知活动,不同作者可能采用不同的计划修订技术、展示不同的停顿模式或在全过程中策略性地分配时间,这些都可能影响写作质量。过去的研究探索了与停顿、添加删除和修订等行为相关的多种过程特征,但是使用的数据集较小,且只研究了少数特征。

本次竞赛使用键盘日志的数据过程特征来预测总体写作质量,可能识别学习者写作行为与表现之间的关系。鉴于当前写作评估工具主要关注最终产出,这可能帮助学习者关注文本产出过程,增强写作的自主性、元认知意识和自我调节。

赛题任务

本次竞赛的目标是预测写作整体质量。写作方式是否会影响作文结果?参赛者将在一个大规模键盘日志数据集上训练模型,该数据集捕获了书写过程特征。

参赛者的工作将帮助探索学习者的书写行为与书写表现之间的关系,这可能为书写指导、自动书写评估技术和智能辅导系统的发展提供有价值的见解。

评价指标

我们使用均方根误差来评分提交项,定义为:

其中是预测值,是n个实例中每个实例i的原始值。

提交文件

对测试集中的每个id,你必须预测对应的score(参见数据页面的描述)。文件应包含一个表头,格式如下:

复制代码
id,score
0000aaaa,1.0
2222bbbb,2.0
4444cccc,3.0
...

数据描述

竞赛数据集包含了大约5000份用户输入日志,如键盘和鼠标点击,这些都是在作文过程中捕获的。每篇作文的评分在0到6的范围内。参赛者的目标是根据用户输入日志来预测一篇作文的评分。

文件和字段信息:

  • train_logs.csv - 用于训练的数据输入日志。

    • id - 文章的唯一ID

    • event_id - 事件的索引,按时间顺序排列

    • down_time - 键盘/鼠标按下的时间,毫秒

    • up_time - 键盘/鼠标释放的时间,毫秒

    • action_time - 事件持续时间(down_time和up_time之差)

  • activity - 事件所属的活动类别

    • Nonproduction - 事件不会改变文本

    • Input - 事件向文档添加文本

    • Remove/Cut - 事件从文档中删除文本

    • Paste - 事件通过粘贴输入改变文本

    • Replace - 事件用另一个字符串替换一段文本

  • Move From [x1, y1] To [x2, y2] - 事件将文本从字符索引x1,y1移动到新的位置x2,y2

  • down_event - 键盘/鼠标按下时的事件名称

  • up_event - 键盘/鼠标释放时的事件名称

  • text_change - 事件导致的文本更改(如果有)

  • cursor_position - 事件后文本光标的字符索引

  • word_count - 事件后文档的词数

注意测试集中可能存在训练集中没有出现过的事件。

  • test_logs.csv - 用于测试的数据输入日志。

  • train_scores.csv

    • id - 文章的唯一ID

    • score - 文章的分数(满分6分,预测目标)

  • sample_submission.csv - 正确格式的提交文件示例。

时间安排

  • 2023 年 10 月 2 日 - 开始日期

  • 2024 年 1 月 2 日 - 报名截止日期

  • 2024 年 1 月 2 日 - 合并截止日期

  • 2024 年 1 月 9 日 - 提交截止日期

赛题奖金

排行榜

  • 第一名 - 12,000美元

  • 第二名 - 8,000美元

  • 第三名 - 5,000美元

效率奖

  • 第一名 - 15,000美元

  • 第二名 - 10,000美元

  • 第三名 - 5,000美元

**关注下方【学姐带你玩AI】**🚀🚀🚀

回复"比赛"获取190+场比赛top方案(kaggle、天池、ccf...)

码字不易,欢迎大家点赞评论收藏!

相关推荐
北京地铁1号线4 分钟前
机器学习面试题:逻辑回归Logistic Regression(LR)
人工智能·机器学习
云雾J视界7 分钟前
AI赋能与敏捷融合:未来电源项目管理者的角色重塑与技能升级——从华为实战看高技术研发项目的管理变革
人工智能·华为·项目管理·电源研发·敏捷项目·电源项目
canonical_entropy20 分钟前
不同的工作需要不同人格的AI大模型?
人工智能·后端·ai编程
老黄编程23 分钟前
--gpu-architecture <arch> (-arch)
linux·人工智能·机器学习
IT_陈寒30 分钟前
Vite 5.0 终极优化指南:7个配置技巧让你的构建速度提升200%
前端·人工智能·后端
点云SLAM42 分钟前
结构光三维重建原理详解(1)
人工智能·数码相机·计算机视觉·三维重建·结构光重建·gray 编码·标定校正
代码AI弗森3 小时前
从 IDE 到 CLI:AI 编程代理工具全景与落地指南(附对比矩阵与脚本化示例)
ide·人工智能·矩阵
xchenhao4 小时前
SciKit-Learn 全面分析分类任务 breast_cancer 数据集
python·机器学习·分类·数据集·scikit-learn·svm
007tg6 小时前
从ChatGPT家长控制功能看AI合规与技术应对策略
人工智能·chatgpt·企业数据安全
Memene摸鱼日报6 小时前
「Memene 摸鱼日报 2025.9.11」腾讯推出命令行编程工具 CodeBuddy Code, ChatGPT 开发者模式迎来 MCP 全面支持
人工智能·chatgpt·agi