深度学习基础知识 学习率调度器的用法解析

深度学习基础知识 学习率调度器的用法解析

1、自定义学习率调度器**:**torch.optim.lr_scheduler.LambdaLR

实验代码:

python 复制代码
import torch
import torch.nn as nn

def lr_lambda(x):
    return x*2
    
net=nn.Sequential(nn.Conv2d(3,16,3,1,1))

optimizer=torch.optim.SGD(net.parameters(),lr=0.01,momentum=0.9)

lr_scheduler=torch.optim.lr_scheduler.LambdaLR(optimizer,lr_lambda=lr_lambda)

for _ in range(10):
    optimizer.step()
    lr_scheduler.step()
    print(optimizer.param_groups[0]['lr'])

打印结果:

分析数据变化如下图所示:

2、正儿八经的模型搭建流程以及学习率调度器的使用设置


代码:

python 复制代码
import torch
import torch.nn as nn
import numpy as np

def create_lr_scheduler(optimizer,
                        num_step:int,
                        epochs:int,
                        warmup=True,
                        warmup_epochs=1,
                        warmup_factor=1e-3):
    assert num_step>0 and epochs>0
    if warmup is False:
        warmup_epochs=0
    
    def f(x):
        """
            根据step数,返回一个学习率倍率因子,
            注意在训练开始之前,pytorch会提前调用一次create_lr_scheduler.step()方法

        
        """

        if warmup is True and x <= (warmup_epochs * num_step):
            alpha=float(x) / (warmup_epochs * num_step)
            # warmup过程中,学习率因子(learning rate factor):warmup_factor -----> 1
            return warmup_factor * (1-alpha) + alpha
        else:
            # warmup后,学习率因子(learning rate factor):warmup_factor -----> 0
            return (1-(x - warmup_epochs * num_step) / (epochs-warmup_epochs * num_step)) ** 0.9
        
    return torch.optim.lr_scheduler.LambdaLR(optimizer,lr_lambda=f)


net=nn.Sequential(nn.Conv2d(3,16,1,1))
optimizer=torch.optim.SGD(net.parameters(),lr=0.01,momentum=0.9)

lr_scheduler=create_lr_scheduler(optimizer=optimizer,num_step=5,epochs=20,warmup=True)

image=(np.random.rand(1,3,64,64)).astype(np.float32)
image_tensor=torch.tensor(image.copy(),dtype=torch.float32)
print(image.dtype)

for epoch in range(20):
    net.train()

    predict=net(image_tensor)
    optimizer.zero_grad()
    optimizer.step()
    lr_scheduler.step()
    print(optimizer.param_groups[0]['lr'])   # 打印学习率变化情况
相关推荐
深度学习实战训练营37 分钟前
基于CNN-RNN的影像报告生成
人工智能·深度学习
秃头佛爷2 小时前
Python学习大纲总结及注意事项
开发语言·python·学习
昨日之日20063 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_3 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover3 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
dayouziei4 小时前
java的类加载机制的学习
java·学习
热爱跑步的恒川4 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程
阡之尘埃6 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
dsywws7 小时前
Linux学习笔记之vim入门
linux·笔记·学习
孙同学要努力8 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络