【算法思考】端到端实例分割模型 SOLO

目录

背景

不同于语义分割,实例分割不仅需要输出图像的语义蒙版,还要对图像中不同的实例作区分。如下图所示,实例分割任务需要多不同的羊做区分,输出不同的实例蒙版。

由于图片中实例个数的不确定性,实例分割一直以来都是比较难的话题。因此在端到端的方法问世之前,大多数方法可以分为两类:一类是先做目标检测,提出包围盒,然后从包围盒中分割出语义实例,比如 mask RCNN。另一类是给每个像素预测出一个向量表示,然后基于向量表示进行聚类。如果想要了解这两类方法的一些具体做法,可以参考 SOLO 这篇论文中的一些讨论。我们今天主要介绍的也是SOLO这篇文章的算法,其可以说是第一篇能做到端到端训练实例分割任务的模型,不要任何包围盒的辅助。

工作

SOLO这篇工作中提出了三个模型,分别是SOLO HEAD,Decoupled SOLO Head,Decoupled SOLO Light Head。我们今天把Decoupled SOLO Light Head的架构拿出来进行分析,方便大家深度了解这篇工作。

首先,如果输入是 288x384, 那么其网络的数据流和架构如下所示:

网络由三部分组成,分别是骨干网络resnet,fpn,solo head 这三个模块。

在图示中,蓝色模块表示卷积, 橙色块表示上采样, 如果橙色块的值为-1表示采样到上一层特征图大小。如果橙色块的值为2表示长采样2倍。灰色的块有 gridX文本, 表示会对feature map resize到(X, X) 大小。白色的块表示不包含batch_size 的特征维度。

在SOLO中很重要的一点是如何表示不同的实例,并从网络的输出中提取出不同的实例。

SOLO采用了这样的解决方法,对于不同的实例,认为每个实例的中心点的位置是不同的。在实际应用中,可以对图像进行划分,比如划分成12x12的网格(后面都用12x12来举例子),规定不同实例的中心点不会落在相同的网格上。通过这种定义,SOLO就可以通过一个类似语义分割模型的mask head进行实例的预测,而语义类别的个数就是划分得到的格子的数量。

除了得到每个实例的mask之外,SOLO模型还需要确定每个实例的语义,也就是通过 classification head得到具体的语义类别。classification head的实现就比较简单,会直接将特征图 resize到 12x12, 对网格中的每个特征进行语义分类。具体某个实例的语义类别,就通过取实例中心对应网格位置的分类结果得到。

总结

总的来说,SOLO这个模型稍微有些复杂,目前在实例分割方面已经有了一些更好的基于transformer的工作,比如mask2former等。SOLO的缺点很明显,其生硬地认为不同的实例中心位置应该不一样,并不适用于某些情况。另外,SOLO在处理不同大小实例的时候不够灵活,不同的分支只能输出固定范围内的实例mask,非常耗费计算力。

相关推荐
hie9889414 分钟前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab
晨同学032717 分钟前
opencv的颜色通道问题 & rgb & bgr
人工智能·opencv·计算机视觉
杰克尼25 分钟前
BM5 合并k个已排序的链表
数据结构·算法·链表
蓝婷儿27 分钟前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
大千AI助手29 分钟前
PageRank:互联网的马尔可夫链平衡态
人工智能·机器学习·贝叶斯·mc·pagerank·条件概率·马尔科夫链
小和尚同志1 小时前
Cline | Cline + Grok3 免费 AI 编程新体验
人工智能·aigc
我就是全世界1 小时前
TensorRT-LLM:大模型推理加速的核心技术与实践优势
人工智能·机器学习·性能优化·大模型·tensorrt-llm
.30-06Springfield1 小时前
决策树(Decision tree)算法详解(ID3、C4.5、CART)
人工智能·python·算法·决策树·机器学习
我不是哆啦A梦1 小时前
破解风电运维“百模大战”困局,机械版ChatGPT诞生?
运维·人工智能·python·算法·chatgpt
xiaolang_8616_wjl1 小时前
c++文字游戏_闯关打怪
开发语言·数据结构·c++·算法·c++20