2022最新版-李宏毅机器学习深度学习课程-P23 为什么用了验证集结果还是过拟合

用了验证集还有可能会过拟合

这个片段可以从理论上证明这一点

以上整个挑选模型的过程也可以想象为一种训练。

把三个模型导出的最小损失公式看成一个集合,现在要做的就是在这个集合中找到某个h(此处可以视为训练),使得在验证集上的损失最低

当抽到不好的训练数据时,理想和现实会有差距。

训练数据不好的原因:

  • 训练资料的大小
  • 模型的复杂程度(越复杂,结果越糟的可能性越大)

当拿到的验证集不好时,理想和现实会有差距。

拿到的验证集不好的原因:

  • 验证集的大小
  • 这个模型的复杂程度(一般不会太大,比如说这里只有3个,取决于如何设计实验)
相关推荐
lihuayong2 分钟前
计算机视觉:经典数据格式(VOC、YOLO、COCO)解析与转换(附代码)
人工智能·yolo·目标检测·计算机视觉·目标跟踪·coco·数据标注
thinkMoreAndDoMore7 分钟前
深度学习(3)-TensorFlow入门(常数张量和变量)
开发语言·人工智能·python
神舟之光9 分钟前
动手学深度学习2025.2.23-预备知识之-线性代数
人工智能·深度学习·线性代数
wapicn9921 分钟前
‌挖数据平台对接DeepSeek推出一键云端部署功能:API接口驱动金融、汽车等行业智能化升级
java·人工智能·python·金融·汽车·php
不爱学习的YY酱28 分钟前
MusicGPT的本地化部署与远程调用:让你的Windows电脑成为AI音乐工作站
人工智能·windows
kakaZhui31 分钟前
【多模态大模型】端侧语音大模型minicpm-o:手机上的 GPT-4o 级多模态大模型
人工智能·chatgpt·aigc·llama
艾思科蓝 AiScholar35 分钟前
【SPIE出版,见刊快速,EI检索稳定,浙江水利水电学院主办】2025年物理学与量子计算国际学术会议(ICPQC 2025)
图像处理·人工智能·信息可视化·自然语言处理·数据分析·力扣·量子计算
liruiqiang051 小时前
机器学习 - 衡量模型的特性
人工智能·机器学习
日记成书1 小时前
详细介绍嵌入式硬件设计
嵌入式硬件·深度学习·学习
thinkMoreAndDoMore1 小时前
深度学习(3)-TensorFlow入门(梯度带)
人工智能·深度学习·tensorflow