2022最新版-李宏毅机器学习深度学习课程-P23 为什么用了验证集结果还是过拟合

用了验证集还有可能会过拟合

这个片段可以从理论上证明这一点

以上整个挑选模型的过程也可以想象为一种训练。

把三个模型导出的最小损失公式看成一个集合,现在要做的就是在这个集合中找到某个h(此处可以视为训练),使得在验证集上的损失最低

当抽到不好的训练数据时,理想和现实会有差距。

训练数据不好的原因:

  • 训练资料的大小
  • 模型的复杂程度(越复杂,结果越糟的可能性越大)

当拿到的验证集不好时,理想和现实会有差距。

拿到的验证集不好的原因:

  • 验证集的大小
  • 这个模型的复杂程度(一般不会太大,比如说这里只有3个,取决于如何设计实验)
相关推荐
怪味&先森19 分钟前
利用pytorch对加噪堆叠自编码器在MNIST数据集进行训练和验证
人工智能·pytorch·python
城电科技27 分钟前
城电科技 | 太阳能花怎么选择?光伏太阳花的应用场景在哪里?
人工智能·科技·能源
丶Darling.1 小时前
深度学习与神经网络 | 邱锡鹏 | 第四章学习笔记 神经网络
深度学习·神经网络·学习
Uncertainty!!1 小时前
在huggingface上制作小demo
开发语言·python·机器学习·huggingface
MPCTHU1 小时前
预测分析(四):面向预测分析的神经网络简介
人工智能·深度学习·神经网络
gqkmiss1 小时前
Browser-use:基于 Python 的智能浏览器自动化 AI 工具调研与实战
人工智能·python·ai·自动化·浏览器
蚂蚁在飞-2 小时前
浏览器自动化操作AI工具-browser-use
运维·人工智能·自动化
jndingxin2 小时前
OpenCV 图形API(17)计算输入矩阵 src 中每个元素的平方根函数sqrt()
人工智能·opencv
Lilith的AI学习日记2 小时前
LangChain核心架构解析:从传统Chain到LCEL的演进之路
人工智能·架构·langchain·ai编程