2022最新版-李宏毅机器学习深度学习课程-P23 为什么用了验证集结果还是过拟合

用了验证集还有可能会过拟合

这个片段可以从理论上证明这一点

以上整个挑选模型的过程也可以想象为一种训练。

把三个模型导出的最小损失公式看成一个集合,现在要做的就是在这个集合中找到某个h(此处可以视为训练),使得在验证集上的损失最低

当抽到不好的训练数据时,理想和现实会有差距。

训练数据不好的原因:

  • 训练资料的大小
  • 模型的复杂程度(越复杂,结果越糟的可能性越大)

当拿到的验证集不好时,理想和现实会有差距。

拿到的验证集不好的原因:

  • 验证集的大小
  • 这个模型的复杂程度(一般不会太大,比如说这里只有3个,取决于如何设计实验)
相关推荐
AI视觉网奇12 分钟前
图生3d算法学习笔记
人工智能
小锋学长生活大爆炸20 分钟前
【DGL系列】dgl中为graph指定CSR/COO/CSC矩阵格式
人工智能·pytorch·深度学习·图神经网络·gnn·dgl
机械心33 分钟前
pytorch深度学习模型推理和部署、pytorch&ONNX&tensorRT模型转换以及python和C++版本部署
pytorch·python·深度学习
佛州小李哥1 小时前
在亚马逊云科技上用AI提示词优化功能写出漂亮提示词(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
鸭鸭鸭进京赶烤1 小时前
计算机工程:解锁未来科技之门!
人工智能·科技·opencv·ai·机器人·硬件工程·软件工程
ModelWhale1 小时前
十年筑梦,再创鲸彩!庆祝和鲸科技十周年
人工智能·科技
啊波次得饿佛哥1 小时前
9. 神经网络(一.神经元模型)
人工智能·深度学习·神经网络
互联网之声1 小时前
科家多功能美发梳:科技赋能,重塑秀发新生
人工智能·科技
Chatopera 研发团队1 小时前
Tensor 基本操作4 理解 indexing,加减乘除和 broadcasting 运算 | PyTorch 深度学习实战
人工智能·pytorch·深度学习
Bruce_Liuxiaowei1 小时前
AI时代的网络安全:传统技术的落寞与新机遇
人工智能·安全·web安全