Python合并多个相交矩形框

Python合并多个相交矩形框

前言

前提条件

相关介绍

  • Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。

实验环境

  • Python 3.x (面向对象的高级语言)

Python合并多个相交矩形框

代码实现

python 复制代码
import cv2
import numpy as np


def xyxy2xywh(rect):
    '''
    (x1,y1,x2,y2) -> (x,y,w,h)
    '''
    return [rect[0],rect[1],rect[2]-rect[0],rect[3]-rect[1]]

def xywh2xyxy(rect):
    '''
    (x,y,w,h) -> (x1,y1,x2,y2)
    '''
    return [rect[0],rect[1],rect[0]+rect[2],rect[1]+rect[3]]


def is_RecA_RecB_interSect(RecA, RecB): # Rec = [xmin,ymin,xmax,ymax]
    # 获取交集区域的[xmin,ymin,xmax,ymax]
    x_A_and_B_min = max(RecA[0], RecB[0])
    y_A_and_B_min = max(RecA[1], RecB[1])
    x_A_and_B_max = min(RecA[2], RecB[2])
    y_A_and_B_max = min(RecA[3], RecB[3])
    # 计算交集部分面积, 当(xmax - xmin)为负时,说明A与B框无交集,直接置为0。 (ymax - ymin)同理。
    interArea = max(0, x_A_and_B_max - x_A_and_B_min) * max(0, y_A_and_B_max - y_A_and_B_min)
    return interArea > 0

def merge_RecA_RecB(RecA, RecB): # Rec = [xmin,ymin,xmax,ymax]
    # 获取合并区域的[xmin,ymin,xmax,ymax]
    xmin = min(RecA[0], RecB[0])
    ymin = min(RecA[1], RecB[1])
    xmax = max(RecA[2], RecB[2])
    ymax = max(RecA[3], RecB[3])
    return [xmin,ymin, xmax,ymax]

# def merge_rect(box,box_len):
#     if  box_len== 1:
#         return box

#     for i in range(box_len):
#         RecA_xywh = box[i]
#         RecA_xyxy = xywh2xyxy(RecA_xywh)
#         for j in range(i+1,box_len):
#             RecB_xywh = box[j]
#             RecB_xyxy = xywh2xyxy(RecB_xywh)
#             print(is_RecA_RecB_interSect(RecA_xyxy, RecB_xyxy))
#             if is_RecA_RecB_interSect(RecA_xyxy, RecB_xyxy):
#                 rect_xyxy = merge_RecA_RecB(RecA_xyxy, RecB_xyxy)
#                 rect_xywh = xyxy2xywh(rect_xyxy)
#                 box.remove(RecA_xywh)
#                 box.remove(RecB_xywh)
#                 box.append(rect_xywh)
#                 box_len = len(box)
#                 merge_rect(box,box_len)
#                 # 此处少了return box会报错
#     return box


# def merge_rect(box, box_len):
    
#     if box_len == 1:
#         return box

#     for i in range(box_len):
#         RecA_xywh = box[i]
#         RecA_xyxy = xywh2xyxy(RecA_xywh)
#         for j in range(i+1, box_len):
#             RecB_xywh = box[j]
#             RecB_xyxy = xywh2xyxy(RecB_xywh)
#             if is_RecA_RecB_interSect(RecA_xyxy, RecB_xyxy):
#                 rect_xyxy = merge_RecA_RecB(RecA_xyxy, RecB_xyxy)
#                 rect_xywh = xyxy2xywh(rect_xyxy)
#                 # 使用remove(elem)来移除元素
#                 box.remove(RecA_xywh)
#                 box.remove(RecB_xywh)

#                 box.append(rect_xywh)
#                 box_len = len(box)
#                 merge_rect(box, box_len)
#                 # 返回上一级循环,避免重复处理已合并的矩形
#                 return box
#     return box



'''
递归是一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,
它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解。
因此递归过程,最重要的就是查看能不能讲原本的问题分解为更小的子问题,这是使用递归的关键。


    终止条件:矩形框数为1或者为空。
    返回值: 新合并的矩形框
    本级任务: 每一级需要做的就是遍历从它开始的后续矩形框,寻找可以和他合并的矩形

'''
def merge_rect(box):
    '''
    合并重叠框 

    输入参数: box :[[x,y,w,h],...]

    返回:
        合并后的box:[[x,y,w,h],...]
    '''
    if len(box) == 1 or len(box) == 0 : # 矩形框数为1或者为空
        return box

    for i in range(len(box)):
        RecA_xywh = box[i]
        RecA_xyxy = xywh2xyxy(RecA_xywh)
        for j in range(i+1, len(box)):
            RecB_xywh = box[j]
            RecB_xyxy = xywh2xyxy(RecB_xywh)
            if is_RecA_RecB_interSect(RecA_xyxy, RecB_xyxy):
                rect_xyxy = merge_RecA_RecB(RecA_xyxy, RecB_xyxy)
                rect_xywh = xyxy2xywh(rect_xyxy)
                # 使用remove(elem)来移除元素
                box.remove(RecA_xywh)
                box.remove(RecB_xywh)
                box.append(rect_xywh)
                merge_rect(box)
                # 返回上一级循环,避免重复处理已合并的矩形
                return box
    return box


if __name__=="__main__":
    # 原始
    box = [[256,256,10,10],[10,10,15,15],[20,20,10,10],[100,100,150,150],
           [200,200,100,100],[400,400,15,15],[410,410,15,15],[420,420,10,10]] # (x,y,w,h)
    print("原始的矩形框:",box)
    
    img = np.ones([512, 512, 3], np.uint8)
    for x,y,w,h in box:
        img = cv2.rectangle(img, (x,y), (x+w,y+h), (0, 255, 0), 2)
    cv2.imshow('origin', img)

    # 合并后
    merged_box =  merge_rect(box)
    print("合并的矩形框:",merged_box)

    img = np.ones([512, 512, 3], np.uint8) 
    for x,y,w,h in merged_box:
        img = cv2.rectangle(img, (x,y), (x+w,y+h), (0, 0, 255), 2)
    cv2.imshow('merged', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
相关推荐
l0sgAi4 分钟前
vLLM在RTX50系显卡上部署大模型-使用wsl2
linux·人工智能
DDliu4 分钟前
花半个月死磕提示词后,我发现:真正值钱的不是模板,是这套可复用的结构化思维
人工智能
腾讯云开发者4 分钟前
AI 浪潮下的锚与帆:工程师文化的变与不变 | 架构师夜生活
人工智能
JoernLee5 分钟前
机器学习算法:支持向量机SVM
人工智能·算法·机器学习
杰尼橙子10 分钟前
深度解读Karpathy说的Software 3.0时代,感觉是个人的机会很大的时代呀
人工智能·openai
wgyang201622 分钟前
我的第一个LangFlow工作流——复读机
python
Zhen (Evan) Wang29 分钟前
(豆包)xgb.XGBRegressor 如何进行参数调优
开发语言·python
我爱一条柴ya33 分钟前
【AI大模型】线性回归:经典算法的深度解析与实战指南
人工智能·python·算法·ai·ai编程
Qiuner39 分钟前
【源力觉醒 创作者计划】开源、易用、强中文:文心一言4.5或是 普通人/非AI程序员 的第一款中文AI?
人工智能·百度·开源·文心一言·gitcode
虾球xz43 分钟前
CppCon 2018 学习:THE MOST VALUABLE VALUES
开发语言·c++·学习